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Tensegrity frameworks

A tensegrity graph T = (V ,C ∪ S) is a graph, in which each edge is
labelled as a cable or a strut.

A d-dimensional tensegrity framework (T , p) is a pair, where
T = (V ,C ∪ S) is a tensegrity graph and p : V −→ Rd is a map.



Infinitesimal rigidity
An infinitesimal motion of a tensegrity framework is an assignment
m : V −→ Rd satisfying

(p(u) − p(v)) · (m(u) − m(v)) ≤ 0 for each cable uv ∈ C,

(p(u) − p(v)) · (m(u) − m(v)) ≥ 0 for each strut uv ∈ S.

A tensegrity framework (T , p) is infinitesimally rigid if every infinitesimal
motion of (T , p) is an infinitesimal isometry of Rd .

An infinitesimally rigid tensegrity framework (T , p) in Rd is called
minimally infinitesimally rigid in Rd if (T − e, p) is not infinitesimally
rigid in Rd for every edge e of T .



Stress

A stress of a tensegrity framework is a function 𝜔 : C ∪ S −→ R such that
𝜔(e) ≤ 0 for each cable e ∈ C,

𝜔(e) ≥ 0 for each strut e ∈ S,∑︁
uv∈C∪S

𝜔(uv) (p(u) − p(v)) = 0 for each vertex v ∈ V .

A stress 𝜔 is a proper stress if 𝜔(e) ≠ 0 for each edge e ∈ C ∪ S.
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Minimally infinitesimally rigid frameworks

A tensegrity framework (T , p) is called minimally infinitesimally rigid if
(T − e, p) is not infinitesimally rigid for every edge e of T .

It is known that a d-dimensional minimally infinitesimally rigid
bar-and-joint framework with |V | ≥ d + 2 has exactly d |V | −

(d+1
2
)

edges.

(a) minimally infinitesimally rigid
framework with 2 |V | − 3 bars

(b) minimally infinitesimally rigid
tensegrity with 4 |V | − 6 members

Question: Can a minimally infinitesimally rigid tensegrity have more edges
than 2

(
d |V | −

(d+1
2
) )

?



Our result

Question: Can a minimally infinitesimally rigid tensegrity have more edges
than 2

(
d |V | −

(d+1
2
) )

?

Theorem
Let (T , p) be a minimally infinitesimally rigid realization of T = (V ,C ∪ S)
in Rd with |V | ≥ d + 2. Then |C ∪ S | ≤ 2 ·

(
d |V | −

(d+1
2
) )

.

equality holds ⇐⇒ (T , p) is a minimally infinitesimally rigid bar-and-joint
framework with parallel cable-strut pairs instead of bars



Main idea of the proof

Theorem (Roth, Whiteley)
Let (T , p) be a tensegrity framework in Rd . Then (T , p) is infinitesimally
rigid if and only if there exists a proper stress of (T , p) and (T , p) is
infinitesimally rigid.

tensegrity framework (T , p) ↔ set of points X ⊂ Rd |V | with |X | = |C ∪ S |

(T , p) is infinitesimally rigid ⇐⇒ conv(X) forms a(
d |V | −

(d+1
2
) )

-dimensional polytope with the origin in its relative interior

Theorem (Steinitz)
Consider X ⊂ Rn a finite set of points and a point x in the interior of
conv(X). Then there is a subset Y ⊆ X of at most 2n points such that x is in
the interior of conv(Y ).



Without parallel edges, d = 1

|C ∪ S | = 2 ·
(
d |V | −

(d+1
2
) )

⇐⇒ (T , p) is a minimally infinitesimally rigid
bar-and-joint framework with parallel cable-strut pairs instead of bars

Question: Can we prove a better upper bound on the number of edges if we
forbid parallel cable-strut pairs?

If (T , p) is minimally infinitesimally rigid in R1, then |C ∪ S | ≤ 2|V | − 2.
If T has no parallel edges: |C ∪ S | ≤ 2|V | − 3. This is sharp.

Figure: Tensegrity graph with 2|V | − 3 edges that has a minimally infinitesimally
rigid realization in R1.



Without parallel edges, d = 2

If (T , p) is minimally infinitesimally rigid in R2, then |C ∪ S | ≤ 4|V | − 6.

Consider the following tensegrity: a unit square of cables with multiple
vertices at its center, each connected to every vertex of the square with struts.
This has 4|V | − 12 edges.

(a) Minimally infinitesimally rigid
tensegrity framework in R2 with
4 |V | − 12 edges. This example is not
generic.

(b) Slightly moving any of the central
points, one of the struts attached to it
becomes redundant.

Without any restrictions on p, we cannot hope for a significantly better upper
bound.



Generic case conjecture
Conjecture
Let (T , p) be a minimally infinitesimally rigid generic realization of a simple
tensegrity graph T = (V ,C ∪ S) in Rd with |V | ≥ d + 2. Then
|C ∪ S | ≤ (d + 1) |V | −

(d+2
2
)
.

Conjecture (d = 2)
Let (T , p) be a minimally infinitesimally rigid generic realization of a simple
tensegrity graph T = (V ,C ∪ S) in R2 with |V | ≥ d + 2. Then
|C ∪ S | ≤ 3|V | − 6.

Figure: Minimally infinitesimally rigid generic tensegrity framework in R2 with
3|V | − 6 edges.



Special case

We can prove the conjecture if we assume that all the vertices are in convex
position and the subgraph (V ,C) forms the boundary cycle of the convex
hull.



Useful tools

The rigidity matroid of a framework (G, p) is defined on the edge set of G,
where F ⊆ E is independent if and only if the corresponding rows of the
rigidity matrix R(G, p) are linearly independent.

The sparsity matroid of a graph G is defined on the edge set of G, where the
edge set of a subgraph H of G is independent if and only if H is sparse, i.e.
for every vertex subset X (of at least 2 vertices) in H, the number of edges
spanned by X is at most 2|X | − 3.

If p is generic, then the rigidity matroid depends only on G and by Laman’s
theorem it is equivalent to the sparsity matroid of G.



Useful tools

Theorem (Roth, Whiteley)
Let (T , p) be a tensegrity framework in Rd . Then (T , p) is infinitesimally
rigid if and only if (T , p) is infinitesimally rigid and there exists a proper
stress of (T , p).

Lemma (Roth, Whiteley)
Let (T , p) be a realization of the tensegrity graph T = (V ,C ∪ S) in Rd and
let e ∈ C ∪ S. If there exists a stress of (T , p) with e in its support, then there
exists a stress 𝜔 of (T , p) with e in its support and such that
rankRA (T , p) = |A| for every A ⊂ supp(𝜔).

Lemma
Let (T , p) be a minimally infinitesimally rigid tensegrity framework in Rd .
Then every infinitesimally rigid subframework of (T , p) is minimally
infinitesimally rigid.



Corollary

If (T , p) is minimally infinitesimally rigid then each edge of T is in a
minimally infinitesimally rigid sub-tensegrity that forms a circuit in the
rigidity matroid of T .

In our special case each of these rigid circuits must contain the subgraph
(V ,C) and by their minimality they are induced by their vertex sets. So T is
a matroid circuit, therefore it has at least 4 vertices and exactly 2|V | − 2
edges. Thus the conjecture holds.



Plans

Our goal is to prove the conjecture for 2-dimensions. Promising results:

- enough to prove it for tensegrities with connected rigidity matroids,
which implies that there exists a matroid ear decomposition of the
rigidity matroid

- if we managed to prove that there always exists a matroid ear
decomposition of the rigidity matroid of T where there is no trivial ear
then the conjecture would follow



Thank you for the attention!


