
Generating Small Graphs up to Isomorphism

Nagy Szabolcs

2023 1st semester, Math Project I.

Summary of the project The goal of the project is to create a user-friendly
tool for generating every small graph of a certain type up to isomorphism.

The realization of this involves the creation of a graph-generating algorithm,
a canonization algorithm to be used by the generator, and a customizable graph-
filter class that we can use to tell the generator which specific graphs we want
to make.

Our approach takes great inspiration from Brendan McKay’s and Adolfo
Piperno’s nauty project, found at [3].

Generating the graphs For now, let us just say we want to generate all
graphs with n ∈ N nodes up to isomorphism. The following algorithm, loosely
described in [2], accomplishes this efficiently:

gen(n):

G← ({v1}, ∅)
gen req(G,n)

gen req(G,n) :

k ← |V (G)|
for all P ∈ 2{1,...,k} do

G′ ← (V (G) + vk+1, E(G) + {vivk+1 : i ∈ P})
if LexIso(G′, k + 1) and GreatOrb(G′, k + 1) then

if k + 1 = n then
Output G′

else
gen req(G′, n)

end if
end if

end for

Basically, we are exploring a search tree of possible graphs, where each level
connects the next node with some collection of nodes already processed.

Here, LexIso(G, k) returns true if and only if G is the “lexicographically
smallest” representative of its isomorphism class in the 2{1,...,k} cycle, and
GreatOrb(G, k) returns true if and only if vi and vk are in the same orbit
of G, where vi is the node that gets the greatest index when the nodes of G are
canonically labeled.

1

Computing these two values is no simple task, but possible, and is massively
aided by a canonization algorithm in the implementation.

Simple induction can be used to show that the algorithm above is going to
output each graph exactly once, with respect to isomorphism.

If we not only want to generate all graphs, but specifically want a certain
family of graphs to be generated, such as connected, triangle-free or degree-
bounded graphs, this algorithm can be modified to filter out unwanted graphs
early on, meaning that the desired graphs can be generated faster.

Canonization Let us say we have some graph-labeling process that, given a
graph G, labels the nodes from 1 to |V (G)|. We call such a process a canoniza-
tion if, for any two isomorphic graphs, the newly labeled graphs are identical.
Such a labeling is called the canonical labeling.

Canonization is a key tool used by the graph-generating algorithm given
above, so we want to implement it effectively.

The description of a canonization can be found in [1], and a working imple-
mentation can be found at [3], as well as the graph-generating algorithm built
on top of it.

The canonization algorithm of [1] in broad terms We aim to choose
the “lexicographically smallest” labeling according to some ordering of labels,
such as taking the adjacency matrix of the labeled graphs and treating them
as base-2 numbers, but considering every possible permutation of nodes would
take way too long, so we try to cut down on the number of checked labelings by
creating a search tree of ordered partitions.

At the root of the tree is the unit partition, where every node is in one
cell, and the children of a node have finer versions of their parents’ partitions.
The leaves of the tree have ordered partitions with only singleton cells, giving
a labeling.

We do this in a manner such that we can notice that a branch is going to yield
no better labeling than what we found so far, cutting out a lot of unnecessary
labelings.

Our work in this semester We have spent a lot of time thoroughly study-
ing the complex canonization algorithm described in [1], the graph-generating
algorithm described in [2], as well as the C code of [3], so we now understand
what the program needs in order to work efficiently. We have already begun
re-implementing the program in C++. My main task in this semester was
comprehending the mathematics behind the algorithms, and implementing the
canonization.

Future goals We are going to create the base for the customizable filters
that can be given to the generator, and implement the graph-generator that
can properly use all of the other tools we have made.

2

References

[1] Brendan D. McKay. Practical graph isomorphism. Congressus Numerantium
vol. 30, pages 45–87, 1981.

[2] Brendan D. McKay. Isomorphism-free exhaustive generation. Journal of
Algorithms 26, pages 306–324, 1998.

[3] Brendan D. McKay and Adolfo Piperno. Nauty and traces. URL: https:
//pallini.di.uniroma1.it/.

3

