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I. INTRODUCTION

One of the most important aspects of machine learning
methods is their generalization capability. A model that was
trained on a finite sample makes predictions on new, unseen
examples. We want to give guarantees on the goodness
of these predictions. For a regression problem, one could
construct an interval that contains the output variable with a
given probability for a new input variable. One of the solutions
to this problem is the framework of conformal prediction.

The illustration of the strength of conformal prediction
could be shown even on I → R regression. The conformal
prediction requires a point estimaton method, which will be the
support vector regression (SVR) method for the illustration.
The kernel methods (including SVR) have emerged because
they could learn in large (and even in infinite dimensional)
feature spaces, without constructing the feature vectors.

II. KERNEL METHODS

Let X be the input domain, let Y be the output domain
(both are assumed to be measurable spaces), and let D be a
distribution on X × Y. Let (x1, y1), . . . , (xm, ym) be a finite
i.i.d sample of input-output measurements having distribution
D. Let ` : Y× Y → R≥0 be a (measurable) loss function. A
fundamental problem in statistical learning is the following:
construct a function f̂ : X→ Y which minimizes the risk, that
is R(f̂) = E(X,Y )∼D

[
`(f̂(X), Y )

]
should be minimized.

We usually have no information about D. We only have
the i.i.d sample with some prior knowledge of the problem (if
we have). If Y is a continuous domain, we call the estimation
problem a regression problem. For now, restrict our Y to R.

Kernel methods could be seen through a similarity measure
between the points in X. With the assumption that if x1 and
x2 are similar, then y1 and y2 will be also similar, we could
use a k : X × X → R≥0 similarity (or dissimilarity) function
which helps us constructing f̂ . This is one of the intuitions
behind kernel methods. Some of the most important definition
and theorems are from the book “Learning with Kernels” [2].

From the optimization perspective positive definite kernels
are more desired because they lead to convex optimization
problems. The positive definiteness is determined by the
(data-dependent) Gram matrices.

Definition 1. (Gram matrix)
Given a function k : X2 → R and patterns x1, . . . , xm ∈ X,

the m×m matrix K with elements Ki,j = k(xi, xj) is called
the Gram matrix (or kernel matrix) of k with respect to the
data points x1, . . . , xm ∈ X.

Definition 2. (Positive definite kernel)
Let X be a nonempty set. A symmetric k : X × X → R

function which ∀m ∀x1, . . . xm ∈ X points gives a positive
semi-definite Gram matrix is called a positive definite kernel
(or kernel). If for all m and distinct {xi} the Gram matrix is
positive definite, the kernel is called strictly positive definite.

For any real-valued kernel: k(x, x) ≥ 0 ∀x ∈ X and
k(xi, xj) = k(xj , xi) ∀xi, xj ∈ X.

The feature map is a Φ : X → H mapping, where H is a
subset of some vector space. We call H a feature space, if it
is a vector space, that contains Φ(x) ∀x ∈ X.

Any (positive definite) kernel corresponds to a dot product
in some feature space (pre-Hilbert space). The opposite is also
true, any dot product in a feature space corresponds to a kernel.

The most simple example is the Φ : x 7→ k(·, x) mapping.
This mapping corresponds to the so-called Reproducing Kernel
Hilbert Spaces, which states whether a dot product in a Hilbert
space corresponds to a kernel.

Definition 3. Reproducing Kernel Hilbert Spaces
Let X be a nonempty set and H a Hilbert space of functions

f : X → R endowed with the dot product 〈·, ·〉. Then H is
called a Reproducing Kernel Hilbert Space if ∃k : X×X→ R
with the following properties:

1) k has the reproducing property
〈f, k(·, x)〉 = f(x) ∀f ∈ H ∀x ∈ X

2) k spans H
H = span{k(x, ·) : x ∈ X}

Back to the estimation problem, when we construct the f̂
function, we require that `(f̂(X), Y ) be small on average.
As we only have the training sample, this leads to searching
for a function that minimizes the empirical risk. As the
No-Free-Lunch-Theorem states [4], this is not enough. One
option is to restrict the possible space of functions explicitly,
which leads to the classical statistical learning setting with
VC-dimension and PAC learning.

The other option is to add a regularization term to the
empirical loss and minimize the sum of the two terms. The
regularization term tries to bound the “complexity” of f̂ . A
common regularization term is Ω(f̂) = 1

2‖f̂‖
2
H, see SVR.

We only require that Ω be a convex function of f .
Because the empirical risk is also required to be convex,
there is only one global minimum of the regularized risk
Rreg(f̂) = 1

m

∑m
i=1 `(f̂(xi), yi) + λΩ(f̂), where λ > 0 is

the regularization parameter.
The Representer Theorem [2] states that given an RKHS,

H, with the kernel k, for minimizing the regularized risk, one
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should only consider the linear span of functions {k(·, xi)}.

Statement 1. (Representer Theorem) Let H be a Reproducing
Kernel Hilbert Space associated to the kernel k. Denote by
Ω : [0,∞] → R a strictly monotonic increasing function,
by X a set, and by ` : R × R → R an arbitrary loss
function. Then each minimizer f̂ ∈ H of the regularized risk
1
m

∑m
i=1 `(f̂(xi), yi)+Ω(‖f̂‖H) admits a representation of the

form f̂(x) =
∑m
i=1 αik(x, xi)

The Representer Theorem gives a guide to how and where
to search the minimizer of the regularized risk. The theorem
explains, e.g., the form of the decision functions in SVRs.

III. SPLIT CONFORMAL PREDICTION

The general idea behind the conformal prediction is due to
Vovk [3]. There, the construction of the intervals depends on
a point estimator and could be computationally intensive.

The split conformal prediction is an alternative way to
construct these intervals [1]. The idea is that we split our
training set into two halves. We fit our point estimator (or
regression algorithm) on the first half, and compute the
absolute error for every instance in the second half. Then,
we compute the corresponding percentile, determined by the
miscoverage level. Finally from this percentile, one could
construct an interval, that contains the true target variable with
high probability.

Algorithm 1: Split Conformal Prediction
Input : Data (Xi, Yi), i = 1, . . . , n, miscoverage level

α ∈ (0, 1), regression algorithm A
Output: Prediction band, over x ∈ Rd
Randomly split {1, . . . , n} into two equal-sized subsets
I1, I2
µ̂ = A({(Xi, Yi) : i ∈ I1})
Ri = |Yi − µ̂(Xi)|, i ∈ I2
d = the kth smallest value in {Ri : i ∈ I2}, where
k = d(n/2 + 1)(1− α)e

Return Csplit(x) = [µ̂(x)− d, µ̂(x) + d]

The following theorems provide stochastic guarantees for
the constructed prediction regions [1].

Statement 2. If (Xi, Yi), i = 1, . . . , n are i.i.d., then for a
new i.i.d. draw (Xn+1, Yn+1)

P(Yn+1 ∈ Csplit(Xn+1)) ≥ 1− α,

for the split conformal prediction band Csplit constructed in
Algorithm 1. Moreover, if we assume additionally that the
residuals Ri, i ∈ I2 have a continuous joint distribution, then

P(Yn+1 ∈ Csplit(Xn+1)) ≤ 1− α+
2

n+ 2

Statement 3. Under the conditions of Statement 2., there is
an absolute constant c > 0 such that, for any ε > 0,

P(| 2
n

∑
i∈I2

I{Yi ∈ Csplit(Xi)} − (1− α)| ≥ ε)

≤ 2 exp(−cn2(ε− 4/n)2+)

IV. NUMERICAL EXPERIMENTS

In the test section, I applied the split conformal prediction
approach on the regression problem f : [0, 1] → R, f(x) =

x sin(cx) with c > 0. I selected the support vector regression
method with RBF kernel as the point estimator that is used
by the split conformal prediction. I tested how the number of
training examples and the α miscoverage level affect the split
conformal prediction regions.

A. Support Vector Regression with RBF kernel

In the SVR setting, we select the regularization as Ω(f) =
λ
2 ‖f‖

2, if f ∈ H where H is an RKHS, then we could write
the regularization term as the function of αi and xi.

The loss `(y, ŷ) = max(|y − ŷ| − ε, 0) is the ε-insensitive
loss. Note that any positive definite kernel could work with
SVR, because of the representer theorem, but here the RBF
kernel was applied. The Gaussian RBF kernel has the form
k(x, x′) = exp(−‖x−x

′‖2/2σ2), with any σ > 0. The RBF
kernel satisfies k(x, x) = 1 ∀x ∈ X and k(x, x′) > 0 ∀x, x′ ∈
X . It can be proven that the Gram matrix with respect to
different x1, . . . , xm points of an RBF kernel always has full
rank, which means that the search space is going to be infinite
dimensional as we add more training examples.

B. Setting and parameters

Let I = [0, 1]. Let f : I → R, f(x) = x sin(cx). Sample:
(Xi, Yi), i = 1, . . . ,m i.i.d, where Xi ∼ U([0, 1]) and Yi =

f(Xi) +Ni, Ni ∼ Laplace(0, b) i.i.d. variables.
The point estimator is Support Vector Regression algorithm,

with ε > 0 in the loss function and C > 0 regularization
parameter. The kernel is RBF with σ > 0.

The prediction intervals have the miscoverage level α.
Parameter values: c = 16.0, b = 0.1, ε = 0.01, C = 1.0,

σ = 0.1.
I was interested in how the α and m parameters affect the

result, therefore I only changed these, while leaving the others
on the default value.

C. Plots

On the plots, the black line is f , the blue points are the
(Xi, Yi) sample points, the dotted red region has α = 0.5, the
dashed red region has α = 0.2, and the solid red region has
α = 0.05 miscoverage level.
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m=40 samples

m=100 samples

m=200 samples

From the resulting plots we can conclude, that for a fixed
m, as α → 1, the conformal regions are centered around the
point estimate function (cf. Algorithm 1).

The other thing, we can conclude is that if we fix α, then
as m→∞, the split conformal prediction region tends to the
real α quantile region (cf. Section 3 of [1]).
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