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1 Introduction

In this document we will provide an introduction to im-
portance sampling, that is a sampling technique designed
to estimate expectations of rare events. Afterwards we
will provide a brief introduction to Bayesian Logistic Re-
gression (BLR), and present a case study on the usage of
importance sampling for the parameters of a BLR model.

2 Importance Sampling

Lets consider a random variable X and a given function
f , for which we would like to estimate the expectation
µ := E[f(X)], using sampling. In the case, when f takes
its nonzero values mainly from low probability regions of
X, the mean from i.i.d. samples µ̂ = 1/n

∑n
i=1 f(xi) is

likely to over-sample regions for which f is always zero,
and take only a few samples from the important region,
where f takes its values defining E[f(X)].
Therefore the concept of importance sampling4 is to

choose an alternative distribution q to generate the
x1, . . . , xn samples from, and use a weighted average to
estimate µ:

µ̂q =
1

n

n∑
i=1

f(xi)
p(xi)

q(xi)
, (1)

where p is the probability density function (pdf) of X,
and q is the pdf of the sampling distribution. Note that if
f(x)p(x) ̸= 0 =⇒ q(x) > 0 holds, then µ̂q is an unbiased
estimate for µ, since

Eq[µ̂q] = Eq

[
f(X)

p(X)

q(X)

]
=

∫
Q

f(x)
p(x)

q(x)
q(x)dx = µ,

with the notations Q = supp(q) and Eq for expectation
under q.
The goal of importance sampling is to reduce the vari-

ance D2
q[µ̂q] of the estimation, that is

Eq[(µ̂q − µ)2] =
1

n

[∫
Q

f2(x)p2(x)

q(x)
dx− µ2

]
. (2)

We can gain insights about what are the good sampling
distributions - for which this variance is small - by analyz-
ing the integrand on the rhs of Eq (2). First lets suppose
that f ≥ 0. In this case if we choose q ∝ fp, we can
conclude that the the normalizing constant of q is 1/µ.
This is unfortunate in the sense, that µ is what we are
looking for in the first place, however substituting fp/µ
into Eq. (2) quite surprisingly yields zero variance. Using
this q clearly doesn’t solve our original problem, but it
shades light on the fact that choosing an appropriate q
can reduce the required sample size in Eq. (1) vastly.

In the general case, when f ≥ 0 not necessarily holds,
the optimal sampling distribution2 is

q∗(x) =
|f(x)|p(x)
E[|f(X)|]

, (3)

which can be shown using Jensen’s inequality:

µ2 + nD2
q∗ [µ̂q∗ ] =

∫
Q

f2(x)p2(x)

|f(x)|p(x)/E[|f(X)|]
dx (4)

= E2[|f(X)|] = E2
q[|f(X)|p(X)/q(X)]

≤ Eq[f
2(X)p2(X)/q2(X)] = µ2 + nD2

q[µ̂q],

so D2
q∗ [µ̂q∗ ] ≤ D2

q[µ̂q] holds. It follows that the value of

the optimal variance is D2
q∗ [µ̂q∗ ] = 1/n

[
E2[|f(X)|]− µ2

]
.

It is useful to keep in mind that a miss-chosen q could
lead to infinite variances of µ̂q, while D2[µ̂] could still be
finite. For example, if q puts small weights on regions,
where p(x)f(x) is large, then the integrand in Eq. (2)
could diverge to ∞.

A possible approach for choosing an appropriate q in
practice will be presented in the following case study,
while in general, q could be found using domain knowl-
edge and educated guessing.

Figure 1: Decision boundaries sampled from the approx-
imation of the posterior.

3 Bayesian Logistic Regression

Let us consider Logistic Regression1 in a Bayesian setting,
used for binary classification. Logistic Regression is a
special case of a more general model class, the Generalized
Linear Models.3,5

Let the observation pairs be (x1, y1), . . . , (xn, yn),
where xi ∈ Rd and yi ∈ {1,−1}. The xi, i ∈ [n] input
features are interpreted as constants, and the correspond-
ing response variables assumed to follow the parametric
model

P(Yi = 1 | θ) = σ(θTΦ(xi)), (5)
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where σ(z) = 1/(1 + e−z) is the sigmoid function, and
Φ : Rd → Rl is a basis function, used to enable nonlinear
decision boundaries.
In Bayesian modeling the model parameter θ is a ran-

dom variable itself, and has a prior distribution π(θ).
Let Y denote (Y1, . . . , Yn)

T . Then the posterior distri-
bution of θ is proportional to

π(θ | Y) = π(θ)

n∏
i=1

σ(Yiθ
TΦ(xi)). (6)

To find the maximum likelihood estimate θ∗ =
argmaxθ π(θ | Y = (y1, . . . , yn)

T ), one can use numerical
methods like the Newton method or Stochastic Gradient
descent. Then if we approximate the log posterior with
its second order Taylor expansion around θ∗

log(π(θ | Y)) ≈ log(π(θ∗ | Y))+
1

2
(θ−θ∗)TH(θ−θ∗), (7)

it can be interpreted as θ | Y ∼ N (θ∗,−H−1). Note
that in Eq. (7) the first gradient should vanish at θ∗

under regularity assumptions and H denotes the Hessian
of π(θ | Y = (y1, . . . , yn)

T ) at θ∗.

4 Case study

Suppose we would like to compute E[f(θ) | Y] for some f ,
which takes its nonzero values at unlikely parameter set-
tings of θ | Y. When the important region of f can’t be
sufficently sampled from N (θ∗,−H−1), it is a general ap-
proach to use a multivariate t distribution t(ν, θ∗,−H−1)
as q to generate samples from the tail of θ | Y more often.
It can be fine tuned with ν how spread out the samples
are.
For a concrete example lets consider a fixed point xK ∈

R2 and let f(θ) = I(σ(θTΦ(xK)) < 1/2). Then E[f(θ)]
is the probability of classifying xK to the negative class
using a hard decision boundary distributed as π(θ | Y).
Samples from the Gaussian approximation of the pos-

terior distribution can be seen in Fig. (1), and since xK

lies quite far from the expected boundary defined by θ∗,
we can conclude that classifying xK to the negative class
is indeed a low probability event.
The basis function used in the experiment was Φ(x) =

(1, x1, x2, x
2
1, x

2
2, x

3
1, x

3
2), and the prior distribution was a

result of an earlier experiment classifying a linearly sep-
arable dataset with the same model. The slope of the
decision boundaries from the prior distribution are some-
what similar to the trend of the actual data, but it lacks
the separation of the ”S shaped” middle part of it (see
Fig. 2).
The true expectation µ was approximated from

100, 000, 000 samples, generated from N (θ∗,−H−1) and
is denoted by µ̃. Fig. (3) shows empirical variances of
E[(µ̂p − µ̃)2] and E[(µ̂q − µ̃)2] for different sample sizes,
where µ̂p was sampled from N (θ∗,−H−1) as well. It can
be concluded that sampling from q did improved on the

variances of the estimates, and the improvement is slightly
more significant at low sample sizes.

Figure 2: Decision boundaries, sampled form the prior
distribution π(θ).

Figure 3: Empirical variances computed from 3000 re-
peated estimations at each sample size n.
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