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1 Introduction

In this document we will provide an introduction to im-
portance sampling, that is a sampling technique designed
to estimate expectations of rare events. Afterwards we
will provide a brief introduction to Bayesian Logistic Re-
gression (BLR), and present a case study on the usage of
importance sampling for the parameters of a BLR model.

2 Importance Sampling

Lets consider a random variable X and a given function
f, for which we would like to estimate the expectation
w:=E[f(X)], using sampling. In the case, when f takes
its nonzero values mainly from low probability regions of
X, the mean from i.i.d. samples i = 1/n )Y ., f(z;) is
likely to over-sample regions for which f is always zero,
and take only a few samples from the important region,
where f takes its values defining E[f(X)].

Therefore the concept of importance sampling? is to
choose an alternative distribution ¢ to generate the

T1,...,T, samples from, and use a weighted average to
estimate pu: Lo (z3)
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where p is the probability density function (pdf) of X,
and ¢ is the pdf of the sampling distribution. Note that if
f(x)p(z) #0 = ¢(x) > 0 holds, then f, is an unbiased
estimate for pu, since

Bl = B, SO0 5| = [ )2t

with the notations @ = supp(q) and E, for expectation
under q.

The goal of importance sampling is to reduce the vari-
ance D2 [fi4] of the estimation, that is

31
q(x)
We can gain insights about what are the good sampling
distributions - for which this variance is small - by analyz-
ing the integrand on the rhs of Eq (2). First lets suppose
that f > 0. In this case if we choose ¢ x fp, we can
conclude that the the normalizing constant of ¢ is 1/pu.
This is unfortunate in the sense, that p is what we are
looking for in the first place, however substituting fp/u
into Eq. (2) quite surprisingly yields zero variance. Using
this ¢ clearly doesn’t solve our original problem, but it
shades light on the fact that choosing an appropriate g
can reduce the required sample size in Eq. (1) vastly.
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In the general case, when f > 0 not necessarily holds,
the optimal sampling distribution? is

@)
T = B

which can be shown using Jensen’s inequality:
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so D2 [fig+] < DZ[fig) holds. It follows that the value of
the optimal variance is D2. [fig-] = 1/n [E[| f(X)]] — p?] .

It is useful to keep in mind that a miss-chosen ¢ could
lead to infinite variances of fi,, while D?[] could still be
finite. For example, if ¢ puts small weights on regions,
where p(z)f(x) is large, then the integrand in Eq. (2)
could diverge to oco.

A possible approach for choosing an appropriate ¢ in
practice will be presented in the following case study,
while in general, ¢ could be found using domain knowl-
edge and educated guessing.
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Figure 1: Decision boundaries sampled from the approx-
imation of the posterior.

3 Bayesian Logistic Regression

Let us consider Logistic Regression! in a Bayesian setting,

used for binary classification. Logistic Regression is a
special case of a more general model class, the Generalized
Linear Models. 3

Let the observation pairs be (x1,y1),---, (Tn,Yn),
where z; € R? and y; € {1,—1}. The x;,i € [n] input
features are interpreted as constants, and the correspond-
ing response variables assumed to follow the parametric
model

P(Y; =10) = o(67®(z,)), (5)



where o(z) = 1/(1 + e #) is the sigmoid function, and
& : RY — R’ is a basis function, used to enable nonlinear
decision boundaries.
In Bayesian modeling the model parameter 6 is a ran-
dom variable itself, and has a prior distribution (8).
Let ) denote (Y1,...,Y,)T. Then the posterior distri-
bution of 8 is proportional to

n

w0 Y) =(0) [[o(Vio" (x:)). (6)
i=1
To find the maximum likelihood estimate 6* =

argmaxg (0 | Y = (y1,...,yn)T), one can use numerical
methods like the Newton method or Stochastic Gradient
descent. Then if we approximate the log posterior with
its second order Taylor expansion around 6*

log(m(6 | ¥)) ~ log(m (6" | y))Jr%(@*G*)TH(@*@*)? (7)

it can be interpreted as 6 | ¥ ~ N(6*,—H~'). Note
that in Eq. (7) the first gradient should vanish at 6*
under regularity assumptions and H denotes the Hessian
of 70| Y = (y1,...,yn)T) at 6*.

4 Case study

Suppose we would like to compute E[f(#) | V] for some f,
which takes its nonzero values at unlikely parameter set-
tings of 6 | Y. When the important region of f can’t be
sufficently sampled from A (#*, —H~1), it is a general ap-
proach to use a multivariate ¢ distribution ¢(v, 0%, —H 1)
as ¢ to generate samples from the tail of 8 | ) more often.
It can be fine tuned with v how spread out the samples
are.

For a concrete example lets consider a fixed point zx €
R? and let f(0) = I(o(0T®(xk)) < 1/2). Then E[f(6)]
is the probability of classifying zx to the negative class
using a hard decision boundary distributed as 7(6 | )).

Samples from the Gaussian approximation of the pos-
terior distribution can be seen in Fig. (1), and since xx
lies quite far from the expected boundary defined by 6*,
we can conclude that classifying zx to the negative class
is indeed a low probability event.

The basis function used in the experiment was ®(z) =
(1,21, 22, 2%, 23,23, 23), and the prior distribution was a
result of an earlier experiment classifying a linearly sep-
arable dataset with the same model. The slope of the
decision boundaries from the prior distribution are some-
what similar to the trend of the actual data, but it lacks
the separation of the ”S shaped” middle part of it (see
Fig. 2).

The true expectation p was approximated from
100,000,000 samples, generated from N(6*, —H ') and
is denoted by fi. Fig. (3) shows empirical variances of
E[(f, — 1)) and E[(fi; — 1)?] for different sample sizes,
where fi,, was sampled from N (0%, —H~!) as well. It can
be concluded that sampling from ¢ did improved on the

variances of the estimates, and the improvement is slightly
more significant at low sample sizes.
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Figure 2: Decision boundaries, sampled form the prior
distribution 7 (6).
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Figure 3: Empirical variances computed from 3000 re-
peated estimations at each sample size n.
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