IMPORTANCE SAMPLING WITH APPLICATIONS TO BAYESIAN LOGISTIC REGRESSION

Jung Ádám

Supervisor : BALÁZS CSANÁD CSÁJI

2024

Overview

Introduction to Importance Sampling

- Brief introduction to Bayesian Logistic Regression (BLR)
- Present a case study on the usage of importance sampling for the parameters of a BLR model

Overview

- Introduction to Importance Sampling
- Brief introduction to Bayesian Logistic Regression (BLR)
- Present a case study on the usage of importance sampling for the parameters of a BLR model

Overview

- Introduction to Importance Sampling
- Brief introduction to Bayesian Logistic Regression (BLR)
- Present a case study on the usage of importance sampling for the parameters of a BLR model

3/9

Importance Sampling

Estimate the expectation $\mu := \mathbb{E}[f(X)]$, using sampling.

Jung Ádám

3/9

Importance Sampling

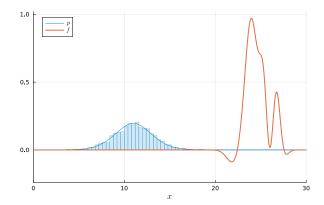
Estimate the expectation $\mu := \mathbb{E}[f(X)]$, using sampling.

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} f(x_i) \qquad x_i \sim p$$

Importance Sampling

Estimate the expectation $\mu := \mathbb{E}[f(X)]$, using sampling.

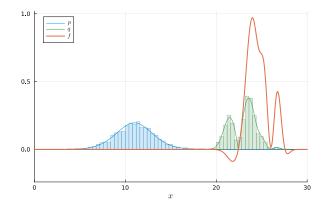
$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} f(x_i) \qquad x_i \sim p$$



Importance Sampling

Estimate the expectation $\mu := \mathbb{E}[f(X)]$, using sampling.

$$\hat{\mu}_q = \frac{1}{n} \sum_{i=1}^n f(x_i) \qquad x_i \sim q$$

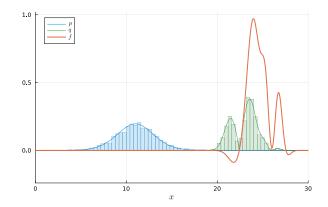


Jung Ádám

Importance Sampling

Estimate the expectation $\mu := \mathbb{E}[f(X)]$, using sampling.

$$\hat{\mu}_q = \frac{1}{n} \sum_{i=1}^n f(x_i) \frac{p(x_i)}{q(x_i)} \qquad x_i \sim q$$



Jung Ádám

4/9

How to choose q?

Minimise the variance of the estimate :

$$\mathbb{E}[(\hat{\mu}_q-\mu)^2] \to \min$$

• Optimum :

 $q^*(x) \propto |f(x)| p(x)$

 $\blacktriangleright \ f \ge 0 \implies \mathbb{D}^2(\hat{\mu}_{q^*}) = 0$

4/9

How to choose q?

Minimise the variance of the estimate :

$$\mathbb{E}[(\hat{\mu}_q-\mu)^2] \to \min$$

• Optimum :

 $q^*(x) \propto |f(x)| p(x)$

 $\blacktriangleright \ f \ge 0 \implies \mathbb{D}^2(\hat{\mu}_{q^*}) = 0$

4/9

How to choose q?

 \blacksquare Minimise the variance of the estimate :

$$\mathbb{E}[(\hat{\mu}_q-\mu)^2] \to \min$$

• Optimum :

 $q^*(x) \propto |f(x)| p(x)$

$$\blacktriangleright \ f \geq 0 \implies \mathbb{D}^2(\hat{\mu}_{q^*}) = 0$$

How to choose q?

Minimise the variance of the estimate :

$$\mathbb{E}[(\hat{\mu}_q-\mu)^2] \to \min$$

• Optimum :

$$q^*(x) \propto |f(x)| p(x)$$

$$\blacktriangleright \ f \ge 0 \implies \mathbb{D}^2(\hat{\mu}_{q^*}) = 0$$

Bayesian Logistic Regression

 $(x_1,y_1),\ldots,(x_n,y_n)$ observations, where $y_i\in\{\pm1\},\,x_i\in\mathbb{R}^d$ \blacksquare Model class :

$$\mathbb{P}(Y_i = 1 \mid \theta) = \sigma(\theta^T \Phi(x_i))$$

• Prior distribution : $\pi(\theta)$

 \blacksquare Posterior distribution \propto

$$\pi(\theta \mid Y) = \pi(\theta) \prod_{i=1}^{n} \sigma(Y_i \theta^T \Phi(x_i))$$

Bayesian Logistic Regression

 $(x_1,y_1),\ldots,(x_n,y_n)$ observations, where $y_i\in\{\pm1\},\,x_i\in\mathbb{R}^d$ \blacksquare Model class :

$$\mathbb{P}(Y_i = 1 \mid \theta) = \sigma(\theta^T \Phi(x_i))$$

• Prior distribution : $\pi(\theta)$

 \blacksquare Posterior distribution \propto

$$\pi(\theta \mid Y) = \pi(\theta) \prod_{i=1}^n \sigma(Y_i \theta^T \Phi(x_i))$$

Bayesian Logistic Regression

 $(x_1,y_1),\ldots,(x_n,y_n)$ observations, where $y_i\in\{\pm1\},\,x_i\in\mathbb{R}^d$ \blacksquare Model class :

$$\mathbb{P}(Y_i = 1 \mid \theta) = \sigma(\theta^T \Phi(x_i))$$

- Prior distribution : $\pi(\theta)$
- \blacksquare Posterior distribution \propto

$$\pi(\theta \mid Y) = \pi(\theta) \prod_{i=1}^n \sigma(Y_i \theta^T \Phi(x_i))$$

Bayesian Logistic Regression

 $(x_1,y_1),\ldots,(x_n,y_n)$ observations, where $y_i\in\{\pm1\},\,x_i\in\mathbb{R}^d$ \blacksquare Model class :

$$\mathbb{P}(Y_i = 1 \mid \theta) = \sigma(\theta^T \Phi(x_i))$$

- Prior distribution : $\pi(\theta)$
- \blacksquare Posterior distribution \propto

$$\pi(\theta \mid Y) = \pi(\theta) \prod_{i=1}^n \sigma(Y_i \theta^T \Phi(x_i))$$

IMPORTANCE SAMPLING WITH APPLICATIONS TO BAYESIAN LOGISTIC REGRESSION

Bayesian Logistic Regression

Jung Ádám

6/9

Importance sampling for BLR

• Approximate $\pi(\theta \mid Y)$ from

$$\log(\pi(\theta \mid Y)) \approx \log(\pi(\theta^* \mid Y)) + \frac{1}{2}(\theta - \theta^*)^T H(\theta - \theta^*)$$

with $\theta \mid Y \sim \mathcal{N}(\theta^*, -H^{-1})$.

Use $t(\nu, \theta^*, -H^{-1})$ as q for importance sampling

Jung Ádám

6/9

Importance sampling for BLR

 \blacksquare Approximate $\pi(\theta \mid Y)$ from

$$\log(\pi(\theta \mid Y)) \approx \log(\pi(\theta^* \mid Y)) + \frac{1}{2}(\theta - \theta^*)^T H(\theta - \theta^*)$$

with $\theta \mid Y \sim \mathcal{N}(\theta^*, -H^{-1}).$

■ Use $t(\nu, \theta^*, -H^{-1})$ as q for importance sampling

Jung Ádám

6/9

Importance sampling for BLR

 \blacksquare Approximate $\pi(\theta \mid Y)$ from

$$\log(\pi(\theta \mid Y)) \approx \log(\pi(\theta^* \mid Y)) + \frac{1}{2}(\theta - \theta^*)^T H(\theta - \theta^*)$$

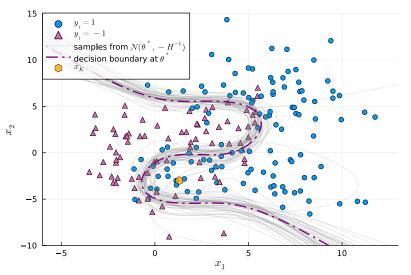
with $\theta \mid Y \sim \mathcal{N}(\theta^*, -H^{-1})$.

 \blacksquare Use $t(\nu, \theta^*, -H^{-1})$ as q for importance sampling

└─Case study

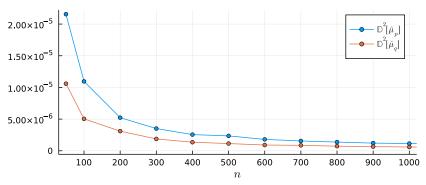
Case study

Let $x_K \in \mathbb{R}^2$ be a fixed point, and let $f(\theta) = \mathbb{I}(\sigma(\theta^T \Phi(x_K)) < 1/2)$.



Variance of the estimates

- Sampling from q did improved on the variances of the estimates
- The improvement is slightly more significant at low sample sizes



Empirical variances computed from 3000 repeated estimations at each sample size n.

THANK YOU FOR LISTENING