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Overview

Introduction to Importance Sampling
Brief introduction to Bayesian Logistic Regression (BLR)
Present a case study on the usage of importance sampling for
the parameters of a BLR model
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Importance Sampling

Estimate the expectation 𝜇 ∶= 𝔼[𝑓(𝑋)], using sampling.
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∑
𝑖=1
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Importance Sampling
Estimate the expectation 𝜇 ∶= 𝔼[𝑓(𝑋)], using sampling.

̂𝜇𝑞 = 1
𝑛

𝑛
∑
𝑖=1

𝑓(𝑥𝑖)
𝑝(𝑥𝑖)
𝑞(𝑥𝑖)

𝑥𝑖 ∼ 𝑞
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How to choose 𝑞 ?

Minimise the variance of the estimate :

𝔼[( ̂𝜇𝑞 − 𝜇)2] → min

Optimum :
𝑞∗(𝑥) ∝ |𝑓(𝑥)|𝑝(𝑥)

▶ 𝑓 ≥ 0 ⟹ 𝔻2( ̂𝜇𝑞∗) = 0
In practice : Domain knowledge and educated guessing
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Bayesian Logistic Regression

(𝑥1, 𝑦1), … , (𝑥𝑛, 𝑦𝑛) observations, where 𝑦𝑖 ∈ {±1}, 𝑥𝑖 ∈ ℝ𝑑

Model class :
ℙ(𝑌𝑖 = 1 ∣ 𝜃) = 𝜎(𝜃𝑇 Φ(𝑥𝑖))

Prior distribution : 𝜋(𝜃)
Posterior distribution ∝

𝜋(𝜃 ∣ 𝑌 ) = 𝜋(𝜃)
𝑛

∏
𝑖=1

𝜎(𝑌𝑖𝜃𝑇 Φ(𝑥𝑖))
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Importance sampling for BLR

Approximate 𝜋(𝜃 ∣ 𝑌 ) from

log(𝜋(𝜃 ∣ 𝑌 )) ≈ log(𝜋(𝜃∗ ∣ 𝑌 )) + 1
2(𝜃 − 𝜃∗)𝑇 𝐻(𝜃 − 𝜃∗)

with 𝜃 ∣ 𝑌 ∼ 𝒩(𝜃∗, −𝐻−1).
Use 𝑡(𝜈, 𝜃∗, −𝐻−1) as 𝑞 for importance sampling
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Case study
Let 𝑥𝐾 ∈ ℝ2 be a fixed point, and let 𝑓(𝜃) = 𝕀(𝜎(𝜃𝑇 Φ(𝑥𝐾)) < 1/2).
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Variance of the estimates
Sampling from 𝑞 did improved on the variances of the
estimates
The improvement is slightly more significant at low sample
sizes

Empirical variances computed from 3000 repeated estimations at
each sample size 𝑛.
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Thank you for listening
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