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Introduction

Overview

m Introduction to Importance Sampling
m Brief introduction to Bayesian Logistic Regression (BLR)

m Present a case study on the usage of importance sampling for
the parameters of a BLR model
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Importance Sampling

How to choose ¢ 7

m Minimise the variance of the estimate :

E[(fi, — p)?] — min
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Importance Sampling

How to choose ¢ 7

m Minimise the variance of the estimate :
El(fi, — 1)2) — min
m Optimum :

q"(x) o< | f(2)|p(x)

» [>20 = D*(fi,) =0

m In practice : Domain knowledge and educated guessing
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m Model class :
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Bayesian Logistic Regression

Bayesian Logistic Regression

(x1,91), -, (z,,,y,) observations, where y, € {+1}, z, € R?
m Model class :
P(Y; =10) = o(072(x,))
m Prior distribution : 7(0)
m Posterior distribution o

m(0]Y)=mn(0 H0Y0T<I>

=1
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Bayesian Logistic Regression

Importance sampling for BLR

m Approximate 7(6 | V) from

log(n(6 | Y)) ~ log(x(6" | V) + %(9 _YTH(O— 0
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Importance sampling for BLR

m Approximate 7(6 | V) from
1
log(m(0|Y)) ~ log(m(0* | Y)) + 5(9 —0)TH(O—6)

with 0 | Y ~ N (6%, —H1).
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Bayesian Logistic Regression

Importance sampling for BLR

m Approximate 7(6 | V) from
1
log(m(0|Y)) ~ log(m(0* | Y)) + 5(9 —0)TH(O—6)

with 0 | Y ~ N (6%, —H1).

m Use t(v,0%,—H ') as q for importance sampling
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Case study

Case study

Let 7, € R? be a fixed point, and let f() = 1(a(0T®(z,)) < 1/2).
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Case study

Variance of the estimates

m Sampling from ¢ did improved on the variances of the
estimates

m The improvement is slightly more significant at low sample
sizes
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Empirical variances computed from 3000 repeated estimations at
each sample size n.
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