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1 Introduction

In this project I study confidence region estimates
of several parameters. In the first semester I dealt
with the one-dimensional case, i.e., built confidence
intervals for the mean or median of a random variable.
In this report I empirically analize the Sign-Perturbed
Sums (SPS) algorithm [I, 2] which constructs confi-
dence intervals for the median of symmetric variables.
I show its advantages through many examples com-
pare to other asymptotic methods. Finally, I present a
reformulation of the resampling framework to a sim-
ple discrete mean estimation problem.

In the scalar case, the general linear regression
model looks as shown below:

Yt:Xt'ﬁ*+€t (t:].,...,n),

where Y; € R is the output, X; € R is the regressor,
et € R is the noise and ¥* € R is the true parameter,
which we want to estimate. In my simulations I deal
with the case when X = 1. My only assumption is

(al) The noise term, {e;} is a sequence of indepen-
dent random variables, and each of them has a
symmetric probability distribution about zero.

When we talk about confidence intervals, we can
discuss two important properties: whether they con-
tain the “true” expected value corresponding to the
confidence level and their lengths. Obviously, we want
an exact inclusion rate and in addition the length of
the interval to be as short as possible.

2 The SPS method

A major advantage of the SPS algorithm is that
it requires mild statistical assumptions, hence it
is distribution-free. The distribution of the noise can
be arbitrary as long as it is symmetric about zero.
Unlike other asymptotic methods, e.g., which use the
central limit theorem (CLT), SPS provides finite sam-
ple guarantees, that is SPS can be used to construct
non-asymptotic confidence regions (intervals) for any
finite sample, so it provides reliable results even for
small sample sizes.

The SPS algorithm starts with the initialization
part. For a user-chosen confidence level p € (0,1)
set integers m > ¢ > 0 such that p = 1 — g/m.
Generate n(m — 1) ii.d. random signs {«;;} with
Plajs = 1) = P(ayy = —1) = 0,5 for all integers
1<i<m-—1and 1<t <n. Then generate a per-
mutation 7 of the set {0,...,m— 1} randomly, where
each of the m! possible permutations has the same

probability 1/(m!) to be selected. The algorithm for
deciding whether a ¢ parameter is included in the
confidence region is shown in Table

1. For a given ¢, compute the prediction errors
e() =Y, =9 for 1<t<n.
2. Evaluate

50(19) = ié‘t(ﬁ), and 52(19) = iai,ta(ﬁ),

for all indices 1 <1i <m — 1.

3. Order scalars {S?(9)} according to >,, where
">r" is ">" with random tie-breaking, cf. [I]

4. Compute the rank of S2(9) by

R() = [1+ mi: I(S5(9) == SZ(V))

5. Return 1 if R < m — ¢, otherwise return 0.

Table 1: Pseudocode: SPS-Indicator(6)

Definition 1 The p-level SPS confidence region:
Cp, = {9 € R: SPS-indicator(¥) = 1}.

Theorem 1 Assuming the coverage probability
of the SPS confidence interval is exactly p, i.e.,

* q

3 Simulations

First, I implemented the algorithm of the SPS
method. To identify its properties, I chose different
distributions and generated a sample from each of
them. I constructed a confidence interval for the me-
dians of these symmetric distributions, using the SPS
and a method based on the CLT. For each sample I
repeated the previous steps 10 000 times for different
number of observations: from 10 to 100 increasing by
10. Finally I measured the proportion of cases, where
the interval contained the true parameter, and the
average length of the intervals. The examined distri-
butions were as follows:

e Standard normal distribution.

e Mixture of two normal distribution: I randomly
generate each data point from AN(—m,1) or
N (m, 1) with probability 1/2 for each distributions,
for m = 2,10, 20.

e Student’s ¢ distribution with 2 degrees of freedom.

e Standard Cauchy distribution: it has a property
that both its expected value and its variance are
undefined. It causes a huge difference in the two
methods, i.e., the asymptotic CLT type method
fails in this case.



e Symmetrized Pareto distribution with different val-
ues of «a: I consider three values of a, first 2.5,
when both the expected value and the variance ex-
ist, then 1.5, when there is no variance but the ex-
pected value exists and finally 0.5, when neither the
expected value nor the variance exist.

My results are shown in Figure [T} 2] and [8] From
the simulations one can conclude that SPS produces
stable exact confidence levels, unlike the CLT-based
method, which can be less useful when there is no
variance and /or the sample size is too small. Although
the CLT intervals are generally shorter, the ones gen-
erated by the SPS are shrinking also at a similar rate
to the other method. Thus a shorter confidence inter-
val can be misleading.
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Figure 1: Simulation results for t distribution
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Figure 2: Simulation results for Cauchy distribution
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Figure 3: Simulation results for normal mixtures and
Pareto distributions

4 Classification

In classification problems we want to predict the
output using explanatory variables. The main differ-
ence w.r.t. regression problems is that in regression
the output variable is continuous, but in classifica-
tion it is discrete, in the simplest binary case Y; can
take only two values, so let Y; € {0,1}. I deal with
the case where there is no explanatory variable, that
is Y} is an indicator variable. The aim is to estimate

the unknown probability p. Here we have the ben-
efit that we know the distribution family of Y; and
nY, which is binomial with order n and parameter
0*, where Y is the sample mean. The ,best” method
to construct confidence intervals for 8* uses the bi-
nomial distribution. One can test any candidate 6
by generating variables Y;; from an indicator distri-
bution with probability 6 for ¢ = 1,...,m — 1 and
t =1,...,n. The SPS-like method can be used with
Si(0) =>1 (Yig—0)fori=1,...,m—1.

I simulated i.i.d. samples for 8* = 0.8, and con-
structed three type of confidence intervals based on
the SPS, CLT and binomial distribution. I repeated
the experiments 10 000 times and examined the in-
clusion rates of the true parameter and the length of
the intervals. The results are shown in Figure [4]
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Figure 4: Simulation results for binomial distribution

My simulation results are similar to the previous
ones, but now we can say that the construction based
on the binomial distribution performs the best. This
gave the shortest confidence interval and at the same
time the inclusion rate was close to 0.5. It is not sur-
prising, this was to be expected. But in general, when
we have one or more classifiers, we do not know any
theoretical distribution. In those cases can be very
useful a non-asymptotic, distribution-free method.

5 Conclusions

In this report I presented the SPS method and
supported its theoretical guarantees with simulations.
In the following semesters, the plan is to deal with the
generalization of this method for multivariate classi-
fication problems.
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