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1. Self-supervised learning
In machine learning, it often happens that a large amount of unlabeled data is available, such as in
medical diagnostics with EEG, ECG, EMG. Since regression and classification tasks heavily rely on
existing labels, having a portion of the data unlabeled can make it challenging to utilize.
My goal for the semester was to get familiar with the basic principals of self-supervised learning and
understand how is it realized in the domain of time-series and pre-training.
The goal of self-supervised learning is to leverage the information content of unlabeled datasets when
solving a task, sometimes even using a different domain and then transferring the knowledge. This
allows us to work with more data, particularly in the realm of time series where there is an abundance
of unlabeled data, making self-supervised learning a valuable tool.
Typically working with unsupervised-learning involves creating a new task, based on the data thus
transforming the unlabeled data into labeled data. One such example is when we mask out the end of
the time-series and then the new labels can be the masked out data. Subsequently, supervised pretraining
is performed using these new labels. Once this is completed, fine-tuning is carried out on the target task.
For the new task the labels are devised in a way that we believe is necessary for the network to understand
the data in order to solve the given problem.

While self-supervised learning is flourishing in computer vision and natural language pro-
cessing, it is still and open question whether this holds true in the time-series domain.

Throughout the semester our goal was to examine and better understand this issue.

2. Time Frequency Consistency framework
I dealt with contrastive pretraining on time series in my independent project, based on the framework
proposed by Zhang, Zhao, and their colleagues [2]. I selected this approach, as it is a quite recent
technique providing robust baseline for pre-training.
The essence of the method is to to create a representation of the data points in a in such a way that
pairs of data considered similar (positive pairs) are close to each other, while those deemed different
(negative pairs) are distant. For example in image classification positive pairs could be pairs of pictures
containing the same object (a tea kettle), and negative pairs are every other picture (not containing a tea
kettle).
It’s not clear how to designate these positive and negative pairs, so for each data point we define a new
one, which will be the positive pair. One way to create a positive pair for a data point is to slightly
modify the time series, thus creating the positive pair. This could be done in the Fourier-space, so the
change is a global. Another idea is to use the Fourier representation of the time-series, in essence a
different representation of the data.
The main concept of the method is to use the Fourier-transform of the time series. Subsequently, embed
both representation into the same time-frequency space (with two different functions), with the objective
of making the two embeddings close to each other.

The issues of generalization with the TFC method To test the capabilities of the system, the original
article works with 8 datasets. For the framework, 4 datasets were designated for pretraining and 4 for
fine-tuning, allowing for testing various training setups.
In the first set of tests, they used 1 pretraining dataset and its corresponding pre-determined fine-tuning
dataset. In the second setup, after using 1 pretraining dataset, tests were conducted on all 4 fine-tuning
sets. Both setups yielded successful results, competing with and surpassing state-of-the-art models.
As a final inquiry, they examined a few test cases where pretraining was done by combining multiple
pretraining datasets, followed by testing on individual fine-tuning datasets. Surprisingly, the method
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yielded poorer results compared to the 1-1 setup. Moreover, the more datasets were combined for
pretraining, the worse the results became on the fine-tuning datasets.
As this is a surprising result, we wanted to examine the reasons behind this phenomenon.

3. Experiments

1. ábra. Comparing the similarity of the dataset
pairs. The columns are the pre-training dataset and
the rows are the fine-tuning.

Our initial hypothesis was that the similarity bet-
ween the pretraining and fine-tuning datasets wo-
uld serve as an indicator of how successful the
fine-tuning would be.
To test this, we needed to define a metric between
two datasets so that we could compare it with the
performance provided by either loss or classifica-
tion accuracy. Futhermore, the given framework
[1] allowed only 4 dataset for pre-training, and 4
for fine-tuning, so we had to expand the scope of
the system. The datasets were syntactically very
different, with varying sampling frequencies, time
series data points per pattern, and channel num-
bers.
Therefore, we conducted the comparison in Fou-
rier space. First, we took all elements of the given
dataset, performed Fourier transformation, aver-
aged the results, and took the absolute value of
the averaged elements.
The length of the pretraining dataset served as the baseline, and we adjusted the transformed fine-tuning
dataset accordingly. If the samples of the fine-tuning dataset were shorter, we padded the end with
zeros. If the fine-tuning dataset was longer, we truncated the end of the averaged vector. Then, we
computed the squared sum of the quadratic differences between these two vectors. The result can be
seen in 1.figure. The columns correspond to the pre-training dataset and the rows are the fine-tuning. We
can see that, there are several pre-training dataset which has a small distance from all of the fine-tuning
ones. These would be: FD_A, FD_B, ECG and EMG. If our assumption is right, we would expect
that pre-training on these datasets would yield the more succesful fine-tuning cases. If this is the case
pre-training on SleepEEG and fine-tuning on any other dataset would result in poorer performance.

Future works In nature the Fourier transforms are such, that the small frequencies dominate and they
are the important ones. If our test would show that the problem behind the poor preformance is the
dissimilarity of the time-series datasets, one could implement augmentation methods to bridge over
these differences. For example various mixup methods.
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