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1. Introduction

One of the most fundamental methods in statistics and there-
fore in machine learning is linear regression. It provides us a
model - a point estimate of the parameters - fitting our noisy
observations well and so a prediction in the not yet visited
points. A natural expectation is to guarantee a confidence re-
gion around these estimated values. There are methods that
work under assumptions about the distribution but in real life
we hardly have appropriate prior knowledge. There are also
asymptotic results but these are not exact on a finite sample. In
this report I describe an algorithm introduced by B. Cs. Csáji,
M. C. Campi and E. Weyer in (2) which gives non-asymptotic
distribution-free confidence regions for the parameters of our
model. I summarize Sign-Perturbed Sums (SPS) method and
show how we can use it through numerical experiencies.

2. SPS method

2.1. Exact Confidence Regions

Consider a linear regression system:

Yt = ϕ
T
t θ
∗ + Nt, (1)

where Yt is the output, ϕt (d dimensional) is the regressor, θ∗

(d dimensional) is the real parameter and Nt is the noise. We
assume that our observations of size n are in the upper form. It
is known that the Least-Squares Estimate (LSE) of θ∗ is:

θ̂n = (ΦT
nΦn)−1ΦT

n Y,

where Φn is the matrix of the n regressors and Y is the vector
of the n outputs. The first goal of SPS is to decide if a given
θ is in the region that contains the real parameter with a given
probability or not.

The only asumptions we need:

• {Nt} must be independent and have symmetric distribution
around zero

• If we define Rn as: Rn =
1
nΦ

T
nΦn =

1
n
∑n

t=1 ϕtϕ
T
t ,

Rn must be invertible

The main idea of the algorithm is to perturb the sign of the
prediction errors of our LSE in order to evaluate the uncertainty
of the estimate. θ̂ was the root of the following equation:

0 =
n∑

t=1

ϕt(Yt − ϕ
T
t θ) =

n∑
t=1

ϕtϕ
T
t (θ∗ − θ) +

n∑
t=1

ϕtNt,

from which we can generate:

H0(θ) =
n∑

t=1

ϕtϕ
T
t (θ∗ − θ) +

n∑
t=1

ϕtNt

and

Hi(θ) =
n∑

t=1

αi,tϕtϕ
T
t (θ∗ − θ) +

n∑
t=1

αi,tϕtNt,

where {αi,t}, i = 1, ..,m−1, t = 1, ..., n are random signs (P(αi,t =

1) = P(αi,t = −1) = 1
2 ).

In (2) it is shown that if ∥θ∗ − θ∥2 is large - so the parameter
in question is far from the real parameter - then ∥H0(θ)∥2 dom-
inates in the ordering of {∥Hi(θ)∥2}. So if we want to build a
confidence set Θ̂ with probability p = 1 − q

m , we shall compare
the following values:

∥S 0(θ)∥2 = ∥R1/2
n

1
n

H0(θ)∥2

∥S i(θ)∥2 = ∥R1/2
n

1
n

Hi(θ)∥2

for i = 1, ...,m−1 and if ∥S 0(θ)∥2 is at most the (m−q)th smallest
then θ ∈ Θ̂.

With this method we can check every θ in the parameter
space and define confidence regions. These are star-convex
around θ̂ and contains θ∗ with the desired certainty. The exact
pseudocode of the algorithm may be found in (2).

2.2. Ellipsoidal Outer Approximation
In practice we might need confidence regions that are easier

to calculate than the exact ones. For this reason we can define
ellipsoids around θ̂ that is an over-bound of Θ̂. Considering a
larger set we quarentee that the probability of the real parameter
being in the ellipsoid is greater than what we want.

If θ ∈ Θ̂ than:

∥S 0(θ)∥22 = (θ − θ̂)R−1
n (θ − θ̂) ≤ r(θ),

where r(θ) is the qth largest value in {∥S i(θ)∥22}. We want to give
a θ-free upper bound which leads to a maximization and in dual
a convex minimization problem for all i = 1, ...,m − 1:

min γ
s.t.λ ≥ 0[

−I + λAi λbi

λbT
i λci + λ

]
⪰ 0,

where Ai, bi, ci come from Φn,Y, θ̂ and {αi,t}. After solving
the m − 1 convex minimization problem, the qth largest opti-
mum will be the proper radius of our ellipsoid.



2.3. Modifying the method to Ridge Regression

Ridge Regression (RR) is a commonly used regularized ver-
sion of the Ordinary Least-Squares (OLS) problem where the
function to minimize is:

∥Y − ΦΘ∥22 − λ∥2Θ∥2.

It can be reformulated as an OLS problem with ΦRR =

[Φ,
√
λI]T and YRR = [Y, 0]T so we can easily determine the

analytic solution:

θ̂n,RR = (ΦT
nΦn + λI)−1ΦT

n Y.

In (1) it is discussed how we can use SPS to generate confidence
regions around RR-estimates.

As we have the OLS version of the RR-problem, we could
apply SPS withΦRR and YRR. The only change we have to make
is in the perturbation part: because the last d rows in ΦRR and
zeros in YRR are only responsible for encoding the regulariza-
tion, we shall not perturb the signs of these residuals.

3. From the Parameter Space to the Function Space

Until now we were in the space of parameters: θ ∈ Rd, but in
the case of d > 3 we can represent the confidence regions better
in the function space: f : R −→ R. We would like to have an
interval in each point around the estimated function value we
have from the LSE. We can transport our results here with the
help of the ellipsoidal outer approximation of our parameter. If
we fix a t0 ∈ R, that gives us a linear optimization proplem on
an ellipsoid (Figure 1).

Figure 1: Example for a linear optimization problem on a confidence ellipsoid
in the parameter space (θ = (θ1, θ2) ∈ R2)

This problem has an exact analytic solution which one can
find e.g. using Lagrangian relaxation what I would like to show.

The convex minimization problem:

min cT θ

s.t. (θ − θ̂)Rn(θ − θ̂) < r,

where c = ϕt0 , θ̂ is the LSE, Rn =
1
nΦ

T
nΦn and r is the radius of

the confidence ellipsoid.
If we take the Lagrangian form:

l(θ, λ) = cT θ + λ(θ − θ̂)Rn(θ − θ̂)
d
dθ

l(θ, λ) = c + λ2Rn(θ − θ̂) = 0⇒ θinf = θ̂ −
1

2λ
R−1

n c

inf
θ

l(θ, λ) = −
1

4λ
cT R−1

n c + cT θ̂ − λr

d
dλ

inf
θ

l(θ, λ) =
1

4λ2 cT R−1
n c − r = 0⇒ λsup =

√
cT R−1

n c
4r

sup
λ≥0

inf
θ

l(θ, λ) = cT θ̂ −
√

cT R−1
n cr, argmin

θ
l(θ, λ) = θ̂ −

√
rR−1

n c√
cT R−1

n c

One can find the maximum at t0 similarly:

sup
λ≥0

inf
θ

l̃(θ, λ) = cT θ̂+
√

cT R−1
n cr, argmin

θ
l̃(θ, λ) = θ̂+

√
rR−1

n c√
cT R−1

n c

4. Numerical Experiments

I made experiments using Python programming language,
Numpy, CVXPy and Matplotlib.Pyplot packages. The noise
in the simulated observations were uncorrelated Gaussian so I
could compare the outer confidence ellipsoid with the asymp-
totic ones given by F-distribution:

{θ : (θ − θ̂)R−1
n (θ − θ̂) ≤

qσ̂n
2

n
},

where σ̂n
2 is the estimated variation of the noise from the

sample and Fχ2 (q) = p. In the figure below (Figure 2) we can
see an experiment where SPS gives us a narrower ellipsoid than
the asymptotic result.

Figure 2: Example for confidence ellipsoids given by SPS and F-distribution
for n = 100, p = 0.9 (for SPS m = 10)

I experimented with different regressors, polynomial, expo-
nential and trigonometrial and plotted the results in the function
space.



A typical result with polynomial regressors is plotted in Fig-
ure 3. We can observe that as we move away from zero the
confidence region adheres to the function. The explanation can
be that the larger exponents start dominate as the absolute value
of x grows.

Figure 3: Example for a confidence region estimate in the function space with
polynomial regressors, n = 30, d = 7, p = 0.8

5. Summary and future work

In this semester my main goal was to get to know the SPS
method and its modifications in outer ellipsoid approximation
and ridge regression. I was able to implement them in Python
and examine them in work. As it is discussed in (3), SPS can be
generalized to define the uncertainty for models given by kernel
methods (4). In the future I would like to continue my work in
this direction.
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