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1. Introduction
The information theory paradigm, rooted in Shannon’s foundational work from the 1940s [5], has gained
significant traction in Machine Learning and Neural Networks. Self-supervised learning involves models
predicting one input part from another, reflecting principles akin to entropy maximization. Despite its
historical significance, several fundamental questions persist in the field. The usage of information ent-
ropy encounters challenges in real-world scenarios due to the absence of underlying Probability Density
Functions (PDFs), leaving only observed data. This obstacle necessitates accurate entropy estimation
solely from observed data, driving the need for flexible, non-parametric methods like the k-nearest neigh-
bor (kNN) approach pioneered by Kozachenko and Leonenko [3]. However, the classical kNN estimator
exhibits bias, particularly in higher dimensions [4]. My research focus centered on creating specific high-
dimensional scenarios challenging the Kozachenko-Leonenko estimator, exploring methods to project data
into lower-dimensional spaces to preserve vital information, aiming to improve results and alleviate biases.

2. The Kozachenko-Leonenko estimate

2.1. Definition (Entropy). Let X be a discrete random variable with probability mass function PX(x),
x ∈ X . The entropy (or Shannon entropy) of X is

H(X) = E
[
log

1

PX(X)

]
=

∑
x∈X

PX(x) log
1

PX(x)
(1)

=

∫
X
PX(x) log

1

PX(x)
dx. (2)

2.2. Definition (k-Nearest Neighbour Kozachenko-Leonenko estimator). According to definition intro-
duced in the paper written by Ao and Li [1]. Let x1, x2, . . . , xn (n ≥ 3) be i.i.d. random variables with
density f on Rd. Let us indentify the k-nearest neighbors (in terms of the p-norm distance) for each xi
and define the smallest closed ball covering them as:

B(xi,
εi
2
) = {x ∈ Rd|∥x− xi∥p ≤ ε

2
},

where ε is twice the distance of xi and its k-th nearest neighbour, and the mass of B(xi,
εi
2 ) is:

qi(εi) =

∫
x∈B(xi,

εi
2 )

PX(x)dx⇒ E(log(qi)) = ψ(k)− ψ(N),

where ψ(N) is equal to Γ
′
(x)

Γ(x) with Γ(x) being the Gamma function. The main assumption of the KL
estimation is that the density is constant within the unit ball approximated by qi(εi) ≈ cdε

d
iPX(xi),

where d is the dimension of X and cd is given by
Γ(1+ 1

p )
d

Γ(1+ d
p )

, which is the volume of the d-dimensional unit
ball according to the given p-norm. This yields the final KL-estimator formula:

ĤKL = ψ(k) + ψ(N) + log cd +
d

N

N∑
i=1

log(εi). (3)

3. Dimensionality Reduction and Entropy Estimation Analysis
I utilized autoencoders, structures comprising an encoder function fenc and a decoder function fdec, to
retain crucial information when projecting into a lower-dimensional space. The encoder, fenc, mapped
high-dimensional input data x from Rinput dim to a lower-dimensional latent representation z in Rlatent dim,
denoted as z = fenc(x). Simultaneously, the decoder function fdec aimed to reconstruct the input from
the encoded representation, achieving x′ = fdec(z) [2]. Two specific model designs were explored: the
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Nonlinear Autoencoder, featuring multiple hidden layers (300-200-100-hidden size) utilizing linear
and Rectified Linear Unit (ReLU) activation layers for both encoder and decoder, and the Linear Au-
toencoder, a simpler architecture using a single linear layer for both encoding and decoding. Training
involved Mean Squared Error (MSE) loss function and Adam optimizer. For data generation, I simulated
scenarios where data predominantly clustered around a hyperplane using custom methods. Initially, I
generated multidimensional data with a normal distribution, emphasizing data concentration around the
hyperplane by scaling down specific lower dimensions by a factor of 0.4. Another strategy involved creat-
ing sets of decorrelated Gaussian data by employing Cholesky decomposition on a specified covariance
matrix, transforming randomly generated data to achieve decorrelation based on the matrix.

(a) First data - full dimension range (b) First data - lower dimension range

(c) Second data - full dimension range (d) Second data - lower dimension range
Figure 1. Comparison of entropy estimation across dimension sizes

The plot color scheme is coherent: blue indicates the analytic entropy, orange represents the original dimensional KL-
estimate, green stands for the linear projection KL-estimate, and red signifies the nonlinear projection. The ’first data’
pertains to the initial data generation process, while the ’second data’ corresponds to the decorrelated Gaussian data.

I computed entropy for the original high-dimensional dataset using both the analytical method and the
KL-estimate, alongside the lower-dimensional representations obtained from two autoencoder models.
The resulting visualization compares entropy estimates across various dimension sizes while maintaining
a fixed 4

5 ratio between lower and higher dimensions. In Figure 1, the top row illustrates outcomes from
the initial data generation process. Overall, the nonlinear model projection yielded the most favorable
results. However, focusing solely on the lower-dimensional outcomes shown on the right side, the linear
model’s low dimensional estimate exhibited closer proximity to the analytical result. Particularly notable
is the significantly improved entropy estimation within the linear projection space, especially beyond
dimension 60 in the case of decorrelated Gaussian data. It’s apparent that using both autoencoder
models I could outperform the direct KL estimation of entropy in the original space. This prompts an
exploration into the underlying reasons for this phenomenon, urging a deeper analysis. To delve further
into this observation, I aim to investigate additional data generation processes that pose challenges for the
estimation of entropy, providing a more comprehensive understanding of the models’ efficacy in capturing
essential information for accurate entropy estimation.
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