Radamacher complexity and Uniform Laws of Large Numbers Advisor: Ambrus Tamás

Béla Szlovicsák

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Glivenko-Cantelli

Theorem (Glivenko-Cantelli)

For any distribution, the empirical cumulative distribution function (CDF) $\hat{F}_n(t)$ is a strongly consistent estimator of the population CDF in the uniform norm, that is

$$||\hat{F}_n - F||_{\infty} \xrightarrow{a.s.} 0.$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Generalization of Glivenko-Cantelli

Definition

Let \mathcal{F} be a class of integrable real-valued functions over the domain X, and let $X_1...X_n$ be a collection of i.i.d. random variables taking values in X, drawn according to the same distribution \mathbb{P} . We then use the notation:

$$||\mathbb{P}_n - \mathbb{P}||_{\mathcal{F}} := \sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i=1}^n f(X_i) - \mathbb{E}[f(X_i)] \right|.$$

We say that \mathcal{F} is a **Glivenko-Cantelli** class for \mathbb{P} if $||\mathbb{P}_n - \mathbb{P}||_{\mathcal{F}}$ converges to zero in probability as $n \longrightarrow \infty$.

- Using the function class *F* = {1_{(-∞,t]} | t ∈ ℝ} gives back the Glivenko-Cantelli theorem.
- In estimation problems one can check whether the class of loss functions is a Glivenko-Cantelli class for any given probability distribution.

Radamacher complexity

Definition

Given \mathcal{F} , a class of real-valued functions, a collection of real numbers $\mathbf{x} := (x_1, ..., x_n)$ and a collection of i.i.d. Radamacher random variables $(\epsilon_1...\epsilon_n)$, that is $\mathbb{P}[\epsilon_i = -1] = \mathbb{P}[\epsilon_i = 1] = \frac{1}{2}$. Then the **empirical Radamacher complexity** is given by applying \mathcal{F} to \mathbf{x} :

$$\mathcal{R}(\mathcal{F}(\mathbf{x})/n) := \mathbb{E}_{\epsilon} [\sup_{f \in \mathcal{F}} |\frac{1}{n} \sum_{i=1}^{n} \epsilon_{i} f(x_{i})|]$$

Definition

Given a class of real-valued functions \mathcal{F} , as before and $\mathbf{X} := (X_1, ..., X_n)$ a collection of i.i.d. samples, the empirical Radamacher complexity $\mathcal{R}(\mathcal{F}(\mathbf{X})/n)$ is a random variable. The expectation of this random variable is the **Radamacher complexity** of the function class \mathcal{F} , denoted by $\mathcal{R}_n(\mathcal{F})$.

Theorem

For any b-uniformly bounded class of functions \mathcal{F} , any positive integer $n \ge 1$ and any real $\delta \ge 0$, we have

$$||\mathbb{P}_n - \mathbb{P}||_{\mathcal{F}} \leq 2\mathcal{R}_n(\mathcal{F}) + \delta,$$

with probability at least $1 - \exp(-\frac{n\delta^2}{2b^2})$. Consequently, if $\mathcal{R}_n(\mathcal{F}) = o(1)$, we have $||\mathbb{P}_n - \mathbb{P}||_{\mathcal{F}} \xrightarrow{a.s.} 0$.

Conclusions

- The last theorem serves as a Uniform Law of Large numbers for classes of uniformly bounded functions.
- From this Theorem the classical Glivenko-Cantelli theorem follows as a corollary.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

This also makes it clear that being able to upper bound Radamacher complexity is crucial to be able to establish meaningful results for different function classes.