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Math project 1
Random matrices, perturbations and their applications in statistics

(Véletlen mátrixok, perturbációk és statisztikai alkalmazásaik)

Covariance matrices play an important role in multivariate statistical analysis, so it can be useful to examine
random matrices that arise as covariance matrices of data. This semester we considered a perturbation
problem in random matrix theory. More precisely, we worked with such problems that are motivated by
analysing big data and matrices. These matrices can be examined with their singular vectors and singular
values. We are often curious about how the singular vectors and singular values of our matrix will change in
case we add a random noise to our matrix. These vectors and values can characterize this new data set well.
Generally we assume that we have a low rank matrix. To model the randomness of the observations, we add
random noise to this low-rank matrix. The main aim of this project is to review the scientific literature of
this area, to get acquinted with statistic applications and to make some computer simulations related to this
topic, which helps us to understand cases where analitic results are not available. Firstly, we have to define
the singular values and singular vectors of matrices.

Definition. Let σ1 be the first singular value of matrix A and and let denote the first singular vector of matrix
A by v1, if

σ1 = max
|v|=1

|Av| and v1 = argmax
|v|=1

|Av|.

By induction, let σi be the i-th singular value of matrix A (for i = 2 . . . r) and let denote the i-th singular
vector of matrix A by vi, if

σi = max
v:|v|=1,v⊥v1,...vi−1

|Av| and vi = argmax
|v|=1,v⊥v1,v2...vi−1

|Av|.

In this situation vr is the last singular vector of matrix A, if σr > 0 and

max
v⊥v1,v2,...vr

|Av| = 0.

This semester I came to know the most important features of singular vectors and values of matrices, by
reading the scientific literature of [2]. For example, we could see that the subspace spanned by the first k
singular vectors of matrix A (1 ≤ k ≤ r) is the best-fit k-dimensional subspace for the row vectors of matrix
A.
The main aim of Wang’s article (cf. [1]) is to give better estimations to the Weil bounds (these are in the 5th
and 7th theorem of his article). I read this article and came to know the most important results and methods,
too. Here we assume that the random noise E is a Bernoulli matrix, so

E = [E]i,j, P(Ei,j = 1) := P(Ei,j = −1) := 0.5
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with independent coordinates. We have proven the Corollary 8 from the Weil bounds. The main result of
Wang’s article is his ninth theorem, which is contained in the next

Theorem. (cf. [1]) Assume that E is a Bernoulli matrix and A,E ∈ Rn×n, furthermore let the rank of A be
denoted by r. For every ε > 0 there exist constants C, δ0 > 0 such that if

δ ≥ δ0 and σ1 ≥ max{n,
√
n · δ}

then with a probability at least 1− ε the inequality

sin(< (v1, v
′
1)) ≤ C ·

√
r

δ

fulfils. Here v1 is the first singular vector of matrix A and v ′
1 is the first singular vector of A + E (the new

matrix).

In order to prove these results, we have to examine the concentration of a Bernoulli matrix. We worked
a lot with Lemma 35 and 36. Lemma 35 was proven with the help of Hoeffding’s inequality but Lemma
36 was written down without any proof. After understanding the proof of Lemma 35, I could give a proof
to lemma 36, too. These lemmata assert that the quadratic form of a Bernoulli matrix can be large only
with low probability. By these lemmata we had to assume that the absolute values of the components of
Bernoulli matrices are upper-bounded. We could see that this assumption is really important. By constructing
appropriate sequences of matrices I could show that in some cases we can only get a trivial upper bound on
the the quadratic form of E.

In the future we will examine these results more deeply. We will make some simulations about random
matrices and their singular vectors and values, in the cases where no analytic results are available. On the
other hand, we would like to understand the perturbed random matrices and their statistic applications more
profoundly. We want to see the connections between this topic and Principal Component Analysis, too.

Last but not least I would like to generalize the results that were proven until now, for example to examine
more complicated random noise matrices than Bernoulli matrices, partly by using scientific literature and
partly on my own.

References

[1] O’Rourke, S.; Vu, V.; Wang, K.: Random perturbation of low rank matrices: Improving classical
bounds, Linear Algebra and its Applications 540 (2016), 26–59.

[2] Blum, A; Hopcroft, J.; Kannan, R.: Foundations of Data Science, Cambridge University Press,
2020.
(https://doi.org/10.1017/9781108755528, cf. https://www.cs.cmu.edu/~venkatg/

teaching/CStheory-infoage/book-chapter-4.pdf)

2

https://doi.org/10.1017/9781108755528
https://www.cs.cmu.edu/~venkatg/teaching/CStheory-infoage/book-chapter-4.pdf
https://www.cs.cmu.edu/~venkatg/teaching/CStheory-infoage/book-chapter-4.pdf

