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Introduction, motivations

• Importance of examining data and covariance.

• How can we describe matrices of data e�ectively?

• Perturbation problem: how can we model noisy observation.
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Singular vectors and values of matrices

• First singular value and vector of A.

• σ1 := max
|v |=1

|Av | and v1 := argmax
|v |=1

|Av |.

• By induction, let σi be the i-th singular value of matrix A (for

i = 2 . . . r) and let denote the i-th singular vector of matrix A
by vi , if

σi = max
v :|v |=1,v⊥v1,...vi−1

|Av | and vi = argmax
|v |=1,v⊥v1,v2...vi−1

|Av |.

• Features of singular vectors and values.
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Quadratic form

Interesting theorem (O'Rourke, Vu, Wang, 2016): If E = [E ]i ,j is a
squared real symmetric matrix with independent entries and zero

mean in and above the main diagonal and there exists a K ≥ 1 with

P(Ei ,j < K ) = 1 (for every i , j)

then for every normalized vectors u, v (|u| = |v | = 1) and every

t > 0 we have

P((Eu)T v ≥ t) ≤ 2 exp

(
− t2

K 2

)
.

The proof of this statement was not elaborated in the paper, I

worked out the details and studied some generalizations.
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Bernoulli matrices

• The matrix E is called Bernoulli matrix if

E = [E ]i ,j , P(Ei ,j = 1) := P(Ei ,j = −1) := 0.5

with independent coordinates.

• We have seen the main theorem of O'Rourke, Vu, Wan with

Bernoulli matrix: if A is data matrix with (low) rank r and E is

a random Bernoulli matrix, then for every ε > 0 there exist

constants C , δ0 > 0 such that if

δ ≥ δ0 and σ1 ≥ max{n,
√
n · δ}.

then with a probability at least 1− ε the inequality

sin
(
< (v1, v

′
1)
)
≤ C ·

√
r

δ

ful�ls.
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Future plans

Making simulations about perturbed random matrices.

Understanding the perturbed random matrices and their

statistical applications.

Seeing the connections between these and Principal

Component Analysis (PCA).
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Thank you for your attention!
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