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Introduction, motivations

e Importance of examining data and covariance.

e How can we describe matrices of data effectively?

e Perturbation problem: how can we model noisy observation.
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Singular vectors and values of matrices

First singular value and vector of A.

o1 := max |Av| and vi := argmax |Av]|.
Ivl=1 [v|=1

By induction, let o; be the i-th singular value of matrix A (for
i=2...r) and let denote the i-th singular vector of matrix A
by Vi, if

o; = max |Av| and v; = argmax |Av].
vijv|=Lvlv,..viq lv|[=1,vLlvi,va...vig

Features of singular vectors and values.
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Quadratic form

Interesting theorem (O'Rourke, Vu, Wang, 2016): If E = [E];; is a
squared real symmetric matrix with independent entries and zero
mean in and above the main diagonal and there exists a K > 1 with

P(Ej<K)=1 (for every i,j)

then for every normalized vectors u, v (Ju] = |v| = 1) and every
t > 0 we have

P((Eu)Tv > t) < 2exp (—;22) .

The proof of this statement was not elaborated in the paper, |
worked out the details and studied some generalizations.
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Bernoulli matrices

e The matrix E is called Bernoulli matrix if
E=I[Elij,  P(Ej=1)=P(E;=-1):=05

with independent coordinates.

e \We have seen the main theorem of O'Rourke, Vu, Wan with
Bernoulli matrix: if A is data matrix with (low) rank r and E is
a random Bernoulli matrix, then for every ¢ > 0 there exist
constants C,dg > 0 such that if

§>68 and o1 > max{n,\/n-5}.

then with a probability at least 1 — € the inequality

sin (< (v,v)) < C- \?

fulfils.
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Future plans

e Making simulations about perturbed random matrices.

@ Understanding the perturbed random matrices and their
statistical applications.

@ Seeing the connections between these and Principal
Component Analysis (PCA).
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Thank you for your attention!
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