Investigation of cryptographic primitives of atomic swaps performed on heterogeneous blockchains

Beáta Nagy

Supervisors: Dr. János Tapolcai, Dr. Bence Ladóczki

January 8, 2024

• Elliptic curve over a finite field \mathbb{F}_p :

$$y^2 \equiv x^3 + ax + b \ (mod \ p),$$

p: prime, *q*: order of the curve, *a*, *b*: given elements of \mathbb{F}_{p} ,

- $f: [1, q-1] \rightarrow E(\mathbb{F}_p), \quad f(v) = v \times G, \quad G$: generator (homomorphy)
- Elliptic Curve Discrete Logarithm Problem (ECDLP): NP-hard
 - v: secret value
 - *f(v)*: public value

Digital Signature Schemes

Schnorr Signature:

 $s \equiv r + h \cdot x \pmod{q}$,

verification:

 $S = R \oplus h \times X$,

ECDSA signature:

 $\boldsymbol{s} \equiv (\boldsymbol{h} + \boldsymbol{\mathcal{R}} \cdot \boldsymbol{x}) \cdot \boldsymbol{r}^{-1} \pmod{\boldsymbol{q}},$

verification:

 $\boldsymbol{s} \times \boldsymbol{R} = (\boldsymbol{h} \times \boldsymbol{G}) \oplus (\boldsymbol{\mathcal{R}} \times \boldsymbol{X}),$

q: order of the curve *s*: signature, f(s) = S *r*: random element, f(r) = R *h*: hashed message: h = H(m|R|X) *x*: secret key, f(x) = X $\mathcal{R} = R$ - leftmost bit (mod *q*) Atomic swaps: exchange of cryptocurrencies in a decentralized way, in one single step

Figure: Sequence diagram of the atomic swap process

Goal: general protocol specification, independent of the blockchains

Beáta Nagy

3 N

Image: A matrix

- **1** X_{AB} : common public key formulation
- 2 m1 = transfer 1 coin from X_{AB} to X_A in Chain2 m2 = transfer R coins from X_{AB} to X_B in Chain1
- 3 A generates offset t
- 4 A creates signature1, signature2 + offset signatures
- **S** B receives offset signatures, verifies
- 6 as A submits signature1, B can calculate offset

- Tool: SageMath, Jupyter Notebook, WSL
- secp256k1 curve
- ECDSA and Schnorr signature primitives:
 - 1 Create, verify signature
 - Offset signature, verify offset, obtain offset
- Schnorr-based atomic swap on homogeneous and heterogeneous (with different finite fields) blockchains
- Currently working on the ECDSA version
 - challenge: multi-signature: A's and B's private keys cannot be separated

Schnorr: $s - t \equiv r_A + h \cdot x_A + r_B + h \cdot x_B \pmod{q}$ ECDSA: $s \equiv (h + \mathcal{R} \cdot x_B + \mathcal{R} \cdot x_A)^{-1} (r_a + r_B) \pmod{q}$

6/9

- Boneh-Lynn-Shacham (BLS) signature scheme
- Atomic swap for ECDSA, BLS
- Comparison of methods

< □ > < 向

C. P. Schnorr (1990)

Efficient Identification and Signatures for Smart Cards Advances in Cryptology — CRYPTO' 89 Proceedings 239–252.

Neal Koblitz, Alfred Menezes, and Scott Vanston (2000) The State of Elliptic Curve Cryptography *Des. Codes Cryptography* 19, 173–193.

Neal Koblitz, Alfred Menezes, and Scott Vanston (2000) Short Signatures from the Weil Pairing Advances in Cryptology — ASIACRYPT 2001. 514–532.

Neal Koblitz (1998)

An elliptic curve implementation of the finite field digital signature algorithm *Advances in Cryptology* — *CRYPTO'* 98 327–337.

Thank you for your attention!

◆□> ◆□> ◆三> ◆三> 三三 のへで