Investigation of cryptographic primitives of atomic swaps performed on heterogeneous blockchains

Beáta Nagy

Supervisors: Dr. János Tapolcai, Dr. Bence Ladóczki
January 8, 2024

Elliptic curve cryptography

- Elliptic curve over a finite field \mathbb{F}_{p} :

$$
y^{2} \equiv x^{3}+a x+b(\bmod p)
$$

p : prime, q : order of the curve, a, b : given elements of $\mathbb{F}_{p,}$

- $f:[1, q-1] \rightarrow E\left(\mathbb{F}_{p}\right), \quad f(v)=v \times G, \quad G:$ generator
(homomorphy)
- Elliptic Curve Discrete Logarithm Problem (ECDLP): NP-hard
- v : secret value
- $f(v)$: public value

Digital Signature Schemes

Schnorr Signature:

ECDSA signature:

$$
s \equiv r+h \cdot x(\bmod q),
$$

$$
s \equiv(h+\mathcal{R} \cdot x) \cdot r^{-1}(\bmod q)
$$

verification:

$$
S=R \oplus h \times X,
$$

verification:
$s \times R=(h \times G) \oplus(\mathcal{R} \times X)$,
q : order of the curve
s : signature, $f(s)=S$
r : random element, $f(r)=R$
h : hashed message: $h=H(m|R| X)$
x : secret key, $f(x)=X$
$\mathcal{R}=R$ - leftmost bit $(\bmod q)$

Application

Atomic swaps: exchange of cryptocurrencies in a decentralized way, in one single step

Figure: Sequence diagram of the atomic swap process

Goal: general protocol specification, independent of the blockchains

Steps of Atomic Swaps

(1) $X_{A B}$: common public key formulation
(2) $\mathrm{m} 1=$ transfer 1 coin from $X_{A B}$ to X_{A} in Chain2 $\mathrm{m} 2=$ transfer R coins from $X_{A B}$ to X_{B} in Chain1
(3) A generates offset t
(4) A creates signature1, signature2 + offset signatures
(5) B receives offset signatures, verifies
(6) as A submits signature1, B can calculate offset

My implementation

- Tool: SageMath, Jupyter Notebook, WSL
- secp256k1 curve
- ECDSA and Schnorr signature primitives:
(1) Create, verify signature
(2) Offset signature, verify offset, obtain offset
- Schnorr-based atomic swap on homogeneous and heterogeneous (with different finite fields) blockchains
- Currently working on the ECDSA version
- challenge: multi-signature: A's and B's private keys cannot be separated
Schnorr: $s-t \equiv r_{A}+h \cdot x_{A}+r_{B}+h \cdot x_{B}(\operatorname{modq})$
ECDSA: $s \equiv\left(h+\mathcal{R} \cdot x_{B}+\mathcal{R} \cdot x_{A}\right)^{-1}\left(r_{a}+r_{B}\right)(\bmod q)$

Future Directions

- Boneh-Lynn-Shacham (BLS) signature scheme
- Atomic swap for ECDSA, BLS
- Comparison of methods

References

目 C．P．Schnorr（1990）
Efficient Identification and Signatures for Smart Cards
Advances in Cryptology－CRYPTO＇ 89 Proceedings 239－252．
目 Neal Koblitz，Alfred Menezes，and Scott Vanston（2000）
The State of Elliptic Curve Cryptography
Des．Codes Cryptography 19，173－193．
Neal Koblitz，Alfred Menezes，and Scott Vanston（2000）
Short Signatures from the Weil Pairing
Advances in Cryptology — ASIACRYPT 2001．514－532．
目 Neal Koblitz（1998）
An elliptic curve implementation of the finite field digital signature algorithm Advances in Cryptology — CRYPTO＇ 98 327－337．

Thank you for your attention！

