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1 Introduction

Within the scope of the project, I dealt with the quantile sketch algorithms in data streams. It is a well-
researched area of mathematics that has many practical applications such as big data [1], distributed
systems [2] and the area that led me here, network traffic monitoring. Within the latter, quantile sketches
are used, for example, catching heavy flows [3], attack detection [4] and even in traffic control [5]. The
goal of my report is to present the problem and give an overview of the results so far, asymptotic limits,
and practical implementations.

2 The quantile problem

A sketch S(X) of some data set X with respect to some function f is a compression of X that allows
us to compute, or approximately compute f (X) given access only to S(X). A streaming algorithm is
processing data streams in which the input is presented as a sequence of items and can be examined only
in one pass. Streaming algorithms often produce approximate answers based on a sketch of the data
stream.

Given a stream of items y1,y2, . . . ,yn in some arbitrary order, and let x1 ≤ x2,≤ . . . ≤ xn the sorted
sequence. If its necessary, we can assume, that all the elements are distinct, since instead of yi we can
take (yi, i) with lexicographical ordering.

Definition 2.1. Given an x element from the input stream. r(x), the rank of x is the number of elements
smaller or equal than x in the sorted input.

Definition 2.2. The q-quantile for q ∈ [0,1] is defined to be the element in position ⌈qn⌉ in the sorted
sequence of the input. In other words, the element whose rank is ⌈qn⌉. Denote this element with xq.

There are different versions of this problem. Sometimes an element x is given, and we need to
compute r(x), and sometimes the opposite; given a rank r (or a quantile q) and the task is to return the
item from the stream, with rank r (or ⌈qn⌉). But usually if we can answer one question, we can also
answer the other.

2.1 Theoretical results

Munro and Paterson [6] showed that Ω(n1/p) space is required to determine the quantile q with p passes.
Furthermore, Blum, Floyd, Pratt, Rivest and Tarjan showed, that we need at least 1.5n comparisons to
compute an exact median of a data set of size n [7]. This paper also shows, that 5.43n comparisons is
always sufficient for any quantile.

Later Dor and Zwick showed, that the lower bound for the median is (2+2−40)n, [8], and the upper
bound for an arbitrary quantile 2.9423n [9].

Typically we only have opportunity to a one-pass algorithm, and with limited space, therefore our
main goal is to approximate the quantiles.

Definition 2.3. An element x̃q is an ε-approximate q quantile if ⌈(q− ε)n⌉ ≤ r(x̃q) ≤ ⌈(q+ ε)n⌉. In
other words |r(xq)− r(x̃q)| ≤ εn. This also known as rank error.

Remark. There are other possible ways to define the error of an approximation, e.g. relative error,
which is defined in the paper in which DDSketch was introduced [10]: x̃q is an α-accurate q-quantile if
|x̃q −xq| ≤ αxq, for a given xq. Since most algorithms use the rank-error, I also use that in the following.

In 1974 Yao showed, that computing an approximate median requires Ω(n) comparisons for any
deterministic algorithm. In 2016 Hung and Ting [11] proved, that any comparison-based algorithm for
finding ε-approximate quantiles needs Ω( 1

ε
log 1

ε
) space.
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3 Major milestones

Definition 3.1. In the single quantile approximation problem, given an x1, . . . ,xn input stream in arbitrary
order, q,ε and δ . Construct a streaming algorithm, which computes an ε-approximate q-quantile with
probability at least 1−δ .

Definition 3.2. In the all quantiles approximation problem, given an x1, . . . ,xn input stream in arbitrary
order, ε and δ . Construct a streaming algorithm, which computes an ε-approximate q-quantile with
probability at least 1−δ for all q simultaneously.

Definition 3.3. A sketching algorithm is (fully) mergeable, if given two sketches S1 and S2 created from
inputs X1 and X2, a sketch S of X := X1 ⊔X2 can be created with no degradation in quality of error or
failure probability, and satisfying the same efficiency constraints as S1, S2.

Publication Algorithm Space Complexity Notes

1988 MRL [12] O( 1
ε

log2
εn)

non-mergeable, all quantiles
deterministic, comparison-based

1988 MRL [12] O( 1
ε

log2 1
ε
+ 1

ε
log2 log 1

δ
)

non-mergeable, all quantiles
randomized, comparison-based

2001 GK [13] O
( 1

ε
log(εn)

) non-mergeable, all quantiles
deterministic, comparison-based

2004 q-digest [14] O( 1
ε

logu)
mergeable, all quantiles

deterministic, fixed universe (of size u)

2016 KLL [15] O( 1
ε

log2 log 1
δ
)

mergeable, singe quantile
randomized, comparison-based

2016 KLL [15] O( 1
ε

log2 log 1
δε
)

mergeable, all quantiles
randomized, comparison-based

2016 KLL [15] O( 1
ε

log log 1
δ
)

non-mergeable, singe quantile
randomized, comparison-based

2016 KLL [15] O( 1
ε

log log 1
δε
))

non-mergeable, all quantiles
randomized, comparison-based

2017 FO [16] O( 1
ε

log 1
ε
)

non-mergeable, all quantiles
randomized, comparison-based

2019 SweepKLL [17] O( 1
ε

log log 1
δε
))

non-mergeable, all quantiles
randomized, comparison-based

runtime is O(log 1
ε
) instead of O( 1

ε
)

Its worth to mention two other sketches; QPipe [18] which is an accelerated version of SweepKLL,
and can be fully implemented in the data plane of a programmable switch, and Moment Sketch [19],
which has no rank error guarantees, but its widely used in practice.

4 Future plans

Our main goal is to create a sketching algorithm that improves its performance using its own predictions.
If we have a sketching algorithm, for quantile sketches, we can use it to get an approximation of the CDF
of the input stream. We assume that if we knew something about the distribution of the input, we would
be able to determine its quantiles more efficiently.

Another interesting problem is when we are only interested in a few predefined quantiles. The idea is
the same; if we can approximate the CDF of the input stream, we can get a more accurate approximation
for those few quantiles as well. In addition to these, sketching algorithms with a relative error bound,
such as HDRHistogram, DDSketch, UDDSketch and ReqSketch may also be worthwile to examine.
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