
Eötvös Loránd University
Faculty of Science

Department of Operations Research

Free-rooted packings of arborescences

Author:
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1 Introduction

In this report we prove new results about packings of arborescences. An r-arborescence is a directed
tree in which each node has an in-degree of 1 except the root note r, which has an in-degree of 0. A
packing of subgraphs in a graph means a collection of subrgraphs, that are edge-disjoint. The most
fundamental result of the study of packings of arborescences is the following result of Edmonds ([4]):

Theorem 1.1. (Weak Edmonds Theorem [4]) Let D = (V,A) a digraph and r ∈ V . There exists a
packing of spanning r-arborescences in G if and only if

ϱA(X) ≥ k for all ∅ ≠ X ⊆ V − r, (1)

where ϱA(X) denotes the in-degree of X.

This result has been generalized in multiple ways. Durand de Gevigney, Nguyen and Szigeti
characterized the existence of matroid-based packings of arborescences in [3], Cs. Király, Szigeti,
Tanigawa characterized the existence of matroid-based and matroid-restricted packings of arbores-
cences in [7] and Bérczi and Frank characterized the existence of free-rooted packings of arborescences
([2]): packings, where the roots of the arborescences are not given (for further definitions see later
sections).

This report generalizes results on free-rooted packings of arborescences. In section 4 we charac-
terize the existence of free-rooted matroid-based and matroid-restricted packings of arboresences and
prove some corollaries. In section 5 we extend a result of Szigeti ([8]) about free-rooted packings of
arborescences in mixed graphs. Every proof in this report is original.

2 Definitions

Given a function f : S → R and a finite set Z ⊂ S, let f̃(Z) :=
∑

s∈Z f(s). Two subsets X,Y ⊆ S
are intersecting, if X ∩ Y ̸= ∅. A set function b on the ground set S is subcardinal, if b(X) ≤ |X|
for all X ⊆ S, submodular, if

b(X) + b(Y ) ≥ b(X ∩ Y ) + b(X ∪ Y ) for all X, Y ⊆ S, (2)

and supermodular, if

b(X) + b(Y ) ≤ b(X ∩ Y ) + b(X ∪ Y ) for all X, Y ⊆ S. (3)

A set function is positively intersecting submodular (positively intersecting supermod-
ular), if (2) (respectively (3)) holds for intersecting subsets of S, for which p(X) > 0, p(Y ) > 0.

Let G = (S, T,E) be a bipartite graph and p : T → Z a positively intersecting supermodular
setfunction for which p(∅) = 0 holds. Let |Γ(Y )| be the set of neighbours of Y in G. We say that
G covers p, if ∀Y ⊆ T : p(Y ) ≤ |Γ(Y )|. Given a matroid M = (S, r), we say that G M -covers p, if
∀Y ⊆ T : p(Y ) ≤ r(Γ(Y )).

Let D = (V + s,A) be a rooted digraph, where s is called the root. The in-degree of s is 0 and
the outgoing edges are called root-edges. We call an s-rooted arborescence an s-arborescence.
For X,Z ⊆ V + s, B ⊆ A let ∂Z(X) denote the set of edges that go from Z − X to X and let
ϱZ(X) = |∂Z(X)|.

Let M1 = (∂s(V ), r1) be a matroid on the root-edges of D. We call a packing of s-arborescences
T1, . . . , Tk M1-based, if every Ti contains exactly one root-edge (ei) and, for all vertices v ∈ V ,
{ei : v ∈ V (Ti)} is a basis of M1. Let M2 = (A, r2) be a matroid on the edges of D. We call a packing
of s-arborescences M2-restricted if the union of the edge sets of the arborescences in the packing is
independent in M2.

3 Background results

The following theorem is a stronger version of Theorem 1.
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Theorem 3.1 (Strong Edmonds Theorem [4]). Let D = (V + s,A) be a rooted digraph, and let
{B1, . . . , Bk} be a partition of its root-edges. There exists a packing of T1, . . . , Tk spanning s-
arborescences, where the root-edges of Ti are in Bi for every i = 1, . . . , k if and only if ϱV (X) ≥
|{i ∈ {1, . . . , k} : Bi ∩ ϱs(X) = ∅}| for all ∅ ≠ X ⊆ V .

In [1], Bérczi and Frank characterized the existence of a packing of spanning arborescences without
specified root-sets, which we call a free-rooted packing.

Theorem 3.2. (Bérczi, Frank [1]) Let D = (V,A) be a digraph with n nodes and let µ1, . . . , µk

positive integers. The following statements are equivalent:

(A) There exists in D a packing of k edge-disjoint spanning arborescences B1, . . . , Bk, for which
|Bi| = µi for all i = 1, . . . , k.

(B1) For every subpartition {V1, . . . , Vq} of V :

k∑
j=1

max{0, q − (n− µj)} ≤
q∑

i=1

ϱ(Vi) (4)

(B2) Let [k] = {1, 2, . . . , k}. For every subpartition {V1, . . . , Vq} of V and for all X ⊆ [k]:

|[k]−X|q −
∑

j∈[k]−X

n− µj ≤
q∑

i=1

ϱ(Vi) (5)

Their proof relies on the following theorem:

Theorem 3.3. (Bérczi, Frank [1]) Let mS be a degree-specification on S for which m̃S(S) = γ. Let
pT be a positively intersecting supermodular function on T with pT (∅) = 0. Suppose that

mS(s) ≤ |T | ∀s ∈ S. (6)

The following statements are equivalent:

(A) There exists a simple bipartite graph G = (S, T,E), which covers pT and fits the degree-
specification mS

(B1) For every subpartition {T1, . . . , Tq} of T and X ⊆ S:

m̃S(X) +

q∑
i=1

pT (Ti)− q|X| ≤ γ (7)

(B2) For every subpartition {T1, . . . , Tq} of T :

q∑
i=1

pT (Ti) ≤
∑
s∈S

min{mS(s), q} (8)

In [2], a generalization of Theorem 3.3 is provided:

Theorem 3.4. (Bérczi, Frank [2]) We are given a matroid M = (S, r), a positively intersecting
supermodular function pT on T and a degree-specification mS on S, for which m̃S(S) = γ. There is
a simple bigraph G = (S, T,E), which M -covers pT and fits mS if and only if

mS(s) ≤ |T | ∀s ∈ S (9)

and for every subpartition {T1, . . . , Tq} of T and X ⊆ S:

m̃S(X) +

q∑
i=1

pT (Ti)− qr(X) ≤ γ (10)
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In [3], Durand de Gevigney, Nguyen and Szigeti characterized the existence of so called matroid-
based packings of arborescences:

Theorem 3.5. (Durand de Gevigney, Nguyen, Szigeti [3]) We are given a graph D = (V + s,A) and
a matroid M = (∂s(V ), r). There is an M -based packing of s-arborescences in D if and only if

ϱV (X) ≥ r(M)− r(∂s(X)) (11)

Furthermore, if we want the S to be the root set of arborescences, then the following must also
hold

∂s(v) is independent in M for every v ∈ V. (12)

The following theorem characterizes the existence of matroid-based and matroid-restricted pack-
ings of s-arborescence, which is a generalization of Theorem 3.5.

Theorem 3.6. (Cs. Király, Szigeti, Tanigawa [7]) We are given a graph D = (V + s,A), a matroid
M1 = (∂s(V ), r1) with a rank function r1, a matroid M2 on A, which is the direct sum of the matroids
Mv = (∂(v), rv). There exist in D an M1-based M2-restricted packing of s-arborescences if and only
if

r1(F ) + r2(∂(X)− F ) ≥ r1(∂s(V )) (13)

for all ∅ ≠ X ⊆ V and F ⊆ ∂s(X). If on the neighbouring edges of s M2 = M2|∂s(V ) ⊕M2|E(V )

and M2|∂s(V ) is the free matroid, then the condition is the following:

r1(∂s(X)) + r2(∂(X)− ∂s(X)) ≥ r1(∂s(V )) (14)

for all ∅ ≠ X ⊆ V .

4 Free-rooted packings of arborescences with matroid con-
straints

In this section we characterize the existence of free-rooted matroid-based and matroid-restricted
packings of arborescences, give two characterizations of the existence of free-rooted matroid-based
packings of arborescences with an in-degree prescription and provide a new characterization for the
existence of a free-rooted arborescence packing with an in-degree prescription.

Using Theorem 3.6 and Theorem 3.4, we can characterize the existence of a free-rooted matroid-
based and matroid restricted packing of arborescences.

Theorem 4.1. Let D = (V,A) be a digraph, let M1 = (S, r1) be a matroid with rank function r1 and
rank k and let M2 be a matroid on A which is the direct sum of the matroids Mv = (∂(v), rv). Let s
be a node not in V . The following statements are equivalent:

(A) We can add new possibly parallel arcs from s to some of the nodes of V and we can assigne
the elements of S to the new edges such that there exists an M1-based M ′

2-restricted packing of
s-arborescences, where M ′

2 the direct sum of the free matroid on the new edges and M2.

(B) For every subpartition {V1, . . . , Vq} of V and X ⊆ S:

(k − r1(X))q − |S −X| ≤
q∑

i=1

r2(∂(Vi)) (15)

Proof. Necessity. Suppose that such a packing exists. Then at most r2(∂(Y )) and at least k− ∂s(Y )
edges of the packing enter a set Y ⊂ V , thus

q∑
i=1

(k − r1(∂s(Vi))) ≤
q∑

i=1

r2(∂(Vi))

Using the properties of the rank function we can show that, for every X ⊆ S
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q∑
i=1

r1(∂s(Vi)) ≤
q∑

i=1

r1(∂s(Vi) ∩X) + r1(∂s(Vi)−X)) ≤ qr1(X) + |S −X|.

Hence

q∑
i=1

r2(∂(Vi)) ≥
q∑

i=1

(k − r1(∂s(Vi))) ≥ qk − qr1(X)− |S −X|.

Sufficiency. Let mS : S → Z+ be 1 for every element of S. Let T := V and let us define the
following intersecting supermodular function on T :

pT (Y ) =

{
k − r2(∂(Y )) ∅ ⊂ Y ⊆ T,

0 Y = ∅.

From the conditions of the theorem:

(k − r1(X))q −
q∑

i=1

r2(∂(Vi)) ≤ |S −X| = m̃S(S −X) = m̃S(S)− m̃S(X)

−r1(X)q +

q∑
i=1

(k − r2(∂(Vi))) ≤ m̃S(S)− m̃S(X)

q∑
i=1

pT (Vi) + m̃S(X)− r1(X)q ≤ m̃S(S)

This is the condition of Theorem 3.4, therefore there exists a simple bipartite graph G = (S, V,E),
which covers pT and satisfies mS , that is r1(Γ(Y )) ≥ k − ϱ(Y ) ∀Y ⊂ V . Direct the edges of G from
S to T , add the edges of D in T and contract the nodes of S into a new node s. Γ(Y ) = ∂s(Y ) holds
therefore, since G covers pT , r1(∂s(Y )) ≥ k − r2(∂(Y )) holds, which is the condition of Theorem
3.6 with matroids M1 and M ′

2, which means that there exists an M1-based M2-restricted packing of
s-arborescences.

Using the previous theorem, we can characterize the existence of a free-rooted matroid-based
packing of arborescences with an in-degree prescription:

Collorary 4.1. Let M = (S, r) be a matroid with rank function r, let D = (V,A) be a digraph
with n nodes and let min : V → Z+ be an in-degree prescription for which 0 ≤ min(v) ≤ ϱD(v),
min(V ) ≤ r(M) for all v ∈ V and m̃in(V ) = |V |r(M) − |S| holds. Let s be a node not in V . The
following statements are equivalent:

(A) We can add new arcs from s to some of the nodes of V and we can assigne the elements of S
to the new edges such that there exists an M -based s-arborescence packing and if the edge set of
the packing whitout the root edges is F , then ϱF (v) = min(v) holds for every v ∈ V .

(B) For all X ⊆ S and subpartition {V1, . . . , Vq} of V :

(r(M)− r(X))q − |S −X| ≤
q∑

i=1

∑
v∈Vi

min{min(v), |∂(v) ∩ ∂(Vi)|} (16)

Proof. Let M1 := M and ∀v ∈ V let Mv be the uniform matroid on ∂(v) with rank min(v). Let M2

be the direkt sum of the matroids Mv. Then

r2(∂(Vi)) =
∑
v∈Vi

min{min(v), |∂(v) ∩ ∂(Vi)|},

so

q∑
i=1

r2(∂(Vi)) =
∑

v∈
⋃

i=1 Vi

min{min(v), |∂(v) ∩ ∂(Vi)|}.
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So (16) is the same as the condition of Theorem 4.1, so there exists aM1-basedM2-restricted pack-
ing. This means that at most min(v) arborescence enters every node v. Since m̃in(V ) = |V |r(M)−|S|
and the right side is the number of edges in an M -based restriction, exactly min(v) edge enters every
node.

Using Collorary 4.1 we can prove a new characterization for the existence of a free-rooted packing
of arborescences with an in-degree prescription.

Collorary 4.2. let D = (V,A) be a digraph with n nodes and let min : V → Z+ be an in-degree
prescription for which 0 ≤ min(v) ≤ ϱD(v) and min(V ) ≤ k for all v ∈ V . Let µ1, . . . , µk be kpositive

integers, for which
∑k

i=1 µi = m̃in(V ). The following statements are equivalent:

(A) There exist in D a packing of spanning arborescenses B1, . . . , Bk k, for which |Bi| = µi and if⋃k
i=1 Bi = F , than v ∈ V : ϱF (V ) = min(v).

(B) For every subpartition {V1, . . . , Vq} of V :

k∑
i=1

max{0, q − (n− µi)} ≤
∑

v∈
⋃q

i=1 Vi

min{min(v), |∂(v) ∩ ∂(Vi)|} (17)

Proof. Let n− µj := mj . This is the number of roots for a spanning arborescence with µj edges.
Let M1 be a partition matroid with k classes, where the size of the i. class is mi and the bound is

1 for every class. (Let M2 be the same matroid as in the previous proof.) According to Collorary 4.1.
(A) ⇔ (r(M)− r(X))q− |S −X| ≤

∑
v∈

⋃q
i=1 Vi

min{min(v), |∂(v) ∩ ∂(Vi)|}. We can assume that the

set X contains either the entire partition class or it is disjoint from it. This is because if it intersects
a class, then if we add the elements from the class that are not contained in X, then the left side
increase and the right side stays the same. So if I = {1, . . . , k}, then

(A) ⇔ (k − |X|)q − m̃(S −X) ≤
∑

v∈
⋃q

i=1 Vi

min{min(v), |∂(v) ∩ ∂(Vi)|}∀X ⊆ I

The left side is maximized by X = {i ∈ I : m(i) > q} and for this set (k − |X|)q − m̃(S −X) =∑k
i=1 max{0, q − (n− µi)} holds.

In [1], Bérczi and Frank provide a different characterization for the same problem with the following
condition:

For all Y ⊆ V and subpartition {V1, . . . , Vq} of V − Y :

k∑
i=1

max{0, q + |Y | − (n− µi)} ≤ m̃in(Y ) +

q∑
i=1

ϱD(Vi) (18)

This result follows from the following theorem, which gives a different characterization of the
existence of a free-rooted matroid-based packing of arborescences with an in-degree prescription with
a seemingly weaker condition. The proof is based on Theorem 3.5 and Theorem 3.4.

Theorem 4.2. Let M = (S, r) be a matroid with rank function r, let D = (V,A) be a digraph
with n nodes and let min : V → Z+ be an in-degree prescription for which 0 ≤ min(v) ≤ ϱD(v),
min(V ) ≤ r(M) for all v ∈ V and m̃in(V ) = |V |r(M) − |S| holds. Let s be a node not in V . The
following statements are equivalent:

(A) We can add new arcs from s to some of the nodes of V and we can assign the elements of S to
the new edges such that there exists an M -based s-arborescence packing and if the edge set of
the packing whitout the root edges is F , then ϱF (v) = min(v) holds for every v ∈ V .

(B) For all Y ⊆ V , subpartition {V1, . . . , Vq} of V − Y and X ⊆ S:

(|Y |+ q)(r(M)− r(X))− |S −X| ≤ m̃in(Y ) +

q∑
i=1

ϱD(Vi) (19)
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Furthermore, (16) implies (19).

Proof. First we will prove that (16) implies (19). By Theorem 4.1, this implies the neccesity of (19).
Let us suppose that (16) holds and we are given a set Y ∈ V and a subpartition P = {V1, . . . , Vq}

of V −Y . Let us define the following partiton of V : P ′ = P∪
⋃

v∈Y {v}. Then |P ′| = q+|Y |, min(Y ) =∑
v∈Y min{min(v), |∂(v) ∩ ∂(Vi)|} és

∑
v∈

⋃q
i=1 Vi

min{min(v), |∂(v) ∩ ∂(Vi)|} ≤
∑q

i=1 ϱD(Vi), so (19)

holds.
Necessity: Let mS : S → Z+ be 1 for every element of S. Let T := V and let us define the

following set function on T :

pT (Y ) =


r(M)− ϱD(Y ) Y ⊆ T, |Y | ≥ 2,

r(M)−min(v) Y = {v}, v ∈ V

0 Y = ∅.

Since min(v) ≤ ϱD(v), k −min(v) ≥ k − ϱD(v) so pT is intersecting supermodular.
Let T = {V1, . . . , Vq, . . . , Vq′} be a subpartition of T , where the last q′ − q class consist of only 1

element. Let P = {V1, . . . , Vq} and Y = Vq+1 ∪ · · · ∪ Vq′ .
From the definition of pT :

q′∑
i=1

pT (Vi) =

q∑
i=1

[r(M)− ϱD(Vi)] +

q′∑
i=q+1

[r(M)− m̃in(Vi)] = (|Y |+ q)r(M)−
q∑

i=1

ϱD(Vi)− m̃in(Y )

If we apply the condition of Theorem 3.4 to T and a set X ⊂ S and we use the previous equation

for
∑q′

i=1 pT (Vi), we get the following:

m̃S(X) + (|Y |+ q)r(M)−
q∑

i=1

ϱD(Vi)− m̃in(Y )− q′r(X) ≤ m̃S(S)

If we reorder the terms and use that q′ = |Y |+q and m̃S(S)−m̃S(X) = |S−X| we get the condition
in (19). So there exists a simple bipartite graph G = (S, V,E), which covers pT -t and satisfies the
degree prescription. From this we get that for every v ∈ V -re r(M) − min(v) ≤ r(ΓG(v)) ≤ dG(v)
(where ΓG(v) is the set of neighbours of v in G), so∑

v∈V

[r(M)−min(v)] ≤
∑
v∈V

dG(v) =
∑
s∈S

dG(s) = |S|

Since m̃in(V ) = |V |r(M) − |S|, the left hand side of the previous equation is |S|, so we have
equality everywhere, so we get dG(v) = r(ΓG(v)) = r(M)−min(v) ∀v ∈ V .

Since ∀Y ⊂ V -re r(M) − ϱD(Y ) ≤ r(ΓG(Y )) also holds, if we contract S and direct its outgoing
edges similarly to the ending of the previous proof, then the condition of Theorem 3.5 holds for the
graph, so there exists an M -based s-arborescence packing. Since r(ΓG(v)) = r(M) − min(v), at
least min(v) arborescence enters v with a non-rootedge. We can assprimeume that exactly r(ΓG(v))
root-edge is in the packing (becouse otherwise we can exchange certain edges of the arborescences),
so there exists a packing wich enters v with exactly min(v) edges.

5 Free-rooted packings of arborescences in mixed graphs

A mixed graph is a graph which has both undirected and directed edges (arcs). In this section we
prove a generalization of a result on free-rooted packings of arborescences in mixed graphs by Szigeti
([8]).

Let F = (V,E ∪ A) be a mixed graph where E is the set of undirected edges and A is the set
of arcs. For B ⊆ E ∪ A, let ∂B(X) be the set of edges in B entering X. Let ϱB(X)= |∂B(X)|.
Orienting an edge we replace it with an arc. For

−→
Z ⊆ A, Z denotes the underlying undirected edges

of
−→
Z . For Z ⊆ E and X ⊆ V the set of vertices covered by Z is denoted by V (Z) and the set of

edges in Z that are induced by X is denoted by Z(X). A mixed r-arborescence is a mixed graph
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that can be oriented to be an r-arborescence. For a family of sets P on V and B ⊆ A∪E let ∂B(P)
be the set of (directed and undirected) edges in B, that enter a member of P and ϱB(P):= |∂B(P)|.
If f, v : V → Z+, then we call a packing of arborescences (f, g)-bounded, if for each v ∈ V , the
number of v-arborescences in the packing is between f(v) and g(v). For k, l, l′ ∈ Z+ − {0} a packing
of arborescences is (l, l′)-bounded if the number of arborescences in the packing is between l and
l′, and k-regular, if each vertex is in exactly k arborescences in the packing. We call a packing of
mixed arborescences (f, g)-bounded/(l, l′)/k-regular, if we can orient the undirected edges such that
we get an (f, g)-bounded/(l, l′)/k-regular packing of arborescences.

For a graph G = (V,E), let MG be the graphic matroid of G, and let Mk
G be the k-graphic

matroid of G, that is the k-sum of MG, which is a matroid on V , where a set is independent if and
only if it can be partitioned into k independent sets of MG. Let F = (V,E ∪ A) be a mixed graph.
For a partition P of V , let A(P) and E(P) be the set of directed and undirected edges entering a
member of P. Let GF = (V,E∪EA) be the underlying undirected graph of F , and DF = (V,AE ∪A)
the directed extension of F , where AE =

⋃
e∈E Ae, and if e = uv, Ae = {−→uv,−→vu} (−→uv is an arc from

u to v). The extended k-hipergraphic matroid Mk
F of F is a matroid on A ∪AE , which we get from

Mk
GF

by replacing each edge e ∈ E with two paralell copies of itself, associating these edges to the
corresponding edges in AE , and associating the edges of EA with the corresponding arcs of A. It is
shown in [6], that the rank function of Mk

F is the following (Z ⊆ A ∪AE):

rMk
F
(Z) = min{|Z ∩A(P)|+ |{e ∈ E(P) : Z ∩Ae ̸= ∅}|+k(|V |− |P|) : P is a partition of V } (20)

Let p and b be two set functions on S. For a vector x ∈ RS and Z ⊆ S, let x̃(Z) :=
∑

s∈S xs. The
polyhedron Q(p, b)= {x ∈ RS : p(Z) ≤ x̃(Z) ≤ b(Z) ∀Z ⊆ S} is called a generalized-polymatroid or
g-polymatroid if p and b have the following properties: p(∅) = b(∅), p is supermodular, b is submodular
and b(X)−b(Y ) ≥ b(X−Y )−p(Y −X) for all X,Y ⊆ S. The Minkowski sum of the n g-polymatroids
Q(pi, bi) is denoted by

∑n
1 Q(pi, bi). For α, β ∈ R, the polyhedron K(α, β)= {x ∈ RS : α ≤ x̃(S) ≤

β} is called a plank. We will use the following results on g-polymatroids:

Theorem 5.1 (Frank [5]). 1. Let Q(p, b) be a g-polymatroid, K(α, β) a plank and M = Q(p, b) ∩
K(α, β).

(i) M ̸= ∅ if and only if p ≤ b, α ≤ β, β ≥ p(S) and α ≤ b(S).

(ii) M is a g-polimatroid.

(iii) If M ̸= ∅, then M = Q(pαβ , q
α
β ) with

pαβ(Z) = max{p(Z), α− b(S − Z)}

bαβ(Z) = min{b(Z), β − p(S − Z)}

2. Let Q(p1, b1) and Q(p2, b2) be two non-empty g-polymatroids and M = Q(p1, b1) ∩Q(p2, b2).

(i) M ̸= ∅ if and only if p1 ≤ b2 and p2 ≤ b1.

(ii) If p1, b1, p2, b2 are integral and M ̸= ∅, then M contains an integral element.

3. Let Q(pi, bi) be n nonempty g-polimatroids. Then
∑n

1 Q(pi, bi) = Q(
∑n

1 pi,
∑n

1 bi).

Theorem 5.2. (Szigeti [8]) Let F = (V,E ∪ A) be a mixed graph, f, g : V → Z+ functions and
k, l, l′ ∈ Z+ − {0}. There exists an (f, g)-bounded k-regular (l, l′)-limited packing of arborescences in
F if and only if gk(v) ≥ f(v) for every v ∈ V , min{g̃k(V ), l′} ≥ l and

ϱA∪E(P) ≥ k|P| −min{l′ − f(∪P), g̃k(∪P)} for every subpartition P of V (21)

Theorem 5.3. (Szigeti [8]) Let F = (V,E ∪ A) be a mixed graph, f, g : V → Z+ functions and
k, l, l′ ∈ Z+ − {0}. Let Mv := (∂A∪Ae(v), rv) be the free matroid for every v ∈ V , and let M :=⊕

v∈V Mv with a rankfunction r. Let Mk
F be the extended k-graphic matroid of F on A ∪ Ae. Let

T := (
∑

v∈V ((Q(0, rv)) ∩K(k − gk(v), k − f(v))) ∩K(k|V | − l′, k|V | − l) ∩Q(0, rMk
F
)).

(A) The characteristic vectors of the edge sets of (f, g)-bounded k-regular (l, l′)-limited M -restricted
packings of arborescences in orientations of F are exactly the integer points of T .
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(B) T ̸= ∅ if and only if gk(v) ≥ f(v) for every v ∈ V , min{g̃k(V ), l′} ≥ l and for every Z ⊆ A∪AE,∑
v∈V

max{0, k − gk(v)− rv(∂
Z(v))} ≤ rMk

F
(Z) (22)

k|V | − l′ −
∑
v∈V

min{rv(∂Z(v)), k − f(v)} ≤ rMk
F
(Z) (23)

(C) (25) and (26) are equivalent to (24).

Theorem 5.4. Let F = (V,E ∪A) be a mixed graph, f, g : V → Z+ functions and k, l, l′ ∈ Z+−{0}.
Let Mv := (∂A∪Ae(v), rv) be a matroid for every v ∈ V , and let M :=

⊕
v∈V Mv with a rankfunction

r. There exists an (f, g)-bounded k-regular (l, l′)-limited M -restricted packing of arborescences in F
if and only if gk(v) ≥ f(v) for every v ∈ V , min{g̃k(V ), l′} ≥ l and

R(P) ≥ k|P| −min{l′ − f(∪P), g̃k(∪P)} for every subpartition P of V (24)

where R(P) = max{r(
−−−−−−→
∂A∪E(P)}, where

−−−−−−→
∂A∪E(P) is an orientation of ∂A∪E(P) in which every

undirected edge is oriented in such a way that it enters a member of P.

The proof of this theorem relies on the following theorem:

Theorem 5.5. Let F = (V,E ∪A) be a mixed graph, f, g : V → Z+ functions and k, l, l′ ∈ Z+−{0}.
Let Mv := (∂A∪Ae(v), rv) be a matroid for every v ∈ V , and let M :=

⊕
v∈V Mv with a rankfunction

r. Let Mk
F be the extended k-graphic matroid of F on A ∪ Ae. Let T := (

∑
v∈V ((Q(0, rv)) ∩K(k −

gk(v), k − f(v))) ∩K(k|V | − l′, k|V | − l) ∩Q(0, rMk
F
)).

(A) The characteristic vectors of the edge sets of (f, g)-bounded k-regular (l, l′)-limited M -restricted
packings of arborescences in orientations of F are exactly the integer points of T .

(B) T ̸= ∅ if and only if gk(v) ≥ f(v) for every v ∈ V , min{g̃k(V ), l′} ≥ l and for every Z ⊆ A∪AE,∑
v∈V

max{0, k − gk(v)− rv(∂
Z(v))} ≤ rMk

F
(Z) (25)

k|V | − l′ −
∑
v∈V

min{rv(∂Z(v)), k − f(v)} ≤ rMk
F
(Z) (26)

(C) (24) implies (25) and (26).

Proof. (A)
By Theorem 5.3/(A), the integer points of T are characteristic vectors of the edge sets of (f, g)-

bounded k-regular (l, l′)-limited packings of arborescences in orientations of F . Since an integer point
of T is also in

∑
v∈V Q(0, rv), the corresponding packing is also M -based.

By the other direction of Theorem 5.3/(A), since the characteristic vector of an M -based packing
must be in

∑
v∈V Q(0, rv), the integer points of T are exactly the characteristic vectors of the edge

sets of the required packings.
(B)
By Theorem 5.1.1 Q(0, rv))∩K(k−gk(v), k−f(v)) is non empty if and only if k−gk(v) ≤ k−f(v)

(which is equivalent to gk(v) ≥ f(v)), k − f(v) ≥ 0 (which is true because 0 ≤ k − gk(v) ≤ k − f(v))
and k − gk(v) ≤ rv(∂

A∪AE (v)) (which we will see later).
If Q(0, rv))∩K(k−gk(v), k−f(v)) ̸= ∅ then it is equal to Q(pv, bv), where by Theorem 5.1.1/(iii),

for Z ⊆ A ∪AE and Zv = Z ∩ ∂A∪AE (v),

pv(Zv) = max{0, k − gk(v)− r(∂Zv (v))}

bv(Zv) = min{r(∂Zv (v), k − f(v)}

By Theorem 5.1.3,
∑

v∈V Q(pv, bv) = Q(pΣ, bΣ), where pΣ =
∑

v∈V pv, bΣ =
∑

v∈V bv.
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By Theorem 5.1.1, Q(0, rMk
F
) ∩ K(k|V | − l′, k|V | − l) ̸= ∅ if and only if k|V | − l′ ≤ k|V | − l

(which is equivalent to the second half of min{g̃k(V ), l′} ≥ l), k|V | − l ≥ 0 (which follows from
k|V | − l ≥ g̃k(V ) − l ≥ 0) and k|V | − l′ ≤ rMk

F
(A ∪ Ae), which is (26) for Z = A ∪ AE . Then

Q(0, rMk
F
) ∩K(k|V | − l′, k|V | − l) = Q(p, b), where p(Z) = max{0, k|V | − l′ − rMk

F
(Z)} and b(Z) =

min{rMk
F
(Z), k|V | − l}.

By Theorem 5.1.2, Q(p, b) ∩Q(pΣ, bΣ) ̸= ∅ if and only if pΣ ≤ b and p ≤ bΣ, that is∑
v∈V

max{0, k − gk(v)− rv(∂
Zv (v))} ≤ min{rMk

F
(Z), k|V | − l}

and

max{0, k|V | − l′ − rMk
F
(Z)} ≤

∑
v∈V

min{rv(∂Zv (v)), k − f(v)}

The first inequality is equivalent to (25) by the fact, that max{0, k|V |− l′−rMk
F
(Z)} ≤

∑
v∈V k−

gk(v) ≤ k|V | − l (here we use that min{g̃k(V ), l′} ≥ l). The first part of the second inequality is
equivalent to k − f(v) ≥ k − gk(v) ≥ 0 (rv ≥ 0 always holds), and the second part is equivalent to
(26).

Finally, k − gk(v) ≤ rv(∂
A∪AE (v)) follows from pΣ(∅) ≤ b(∅) and the proof is complete.

(C)
Note, that (25) is equivalent to

k|V | − gk(V )−
∑
v∈V

min{rv(∂Z(v)), k − gk(V )} ≤ rMk
F
(Z). (27)

Let Z ⊆ A∪AE . By (20), there exists a partition P of V such that for K = {e ∈ E(P) : Z∩Ae ̸=
∅}:

rMk
F
(Z) = |Z ∩A(P)|+ |K|+ k(|V | − |P |). (28)

Let Ph := {X ∈ P : rv(∂
Z(v)) ≤ k−h(v) (∀v ∈ V )}, where h ∈ {f, gk}. Then Ph is a subpartition

of V and for every X ∈ P − Ph there exists a vX ∈ X such that rv(∂
Z(v)) > k − h(v).

By the definition of K, we have

AE(Ph)−K ⊆ Z ∩AE(Ph). (29)

Then, by (28), the definition of Ph and vX , rv(∂
Z(v)) ≥ 0, k − h ≥ 0, h ≥ 0 and r(X) ≤ |X|

(subcardinality of the rank function of a matroid), we have:

rMk
F
(Z) +

∑
v∈V

min{rv(∂Z(v)), k − h(V )} =

= |Z ∩A(P)|+ |K|+ k(|V | − |P|) +
∑
v∈∪P

min{rv(∂Z(v)), k− h(V )}+
∑
v∈∪P

min{rv(∂Z(v)), k− h(V )}

≥ |Z ∩A(Ph)|+
∑
v∈∪P

rv(∂
Z(v)) +

∑
X∈P−Ph

∑
v∈X

min{rv(∂Z(v)), k − h(V )}+ |K|+ k(|V | − |P|)

≥ |Z ∩A(Ph)|+ r((Z ∩A(Ph)) ∪ (Z ∩AE(Ph))) +
∑

X∈P−Ph

(k − h(vX)) + |K|+ k(|V | − |P|)

≥ r(Z ∩A(Ph)) + r((Z ∩A(Ph)) ∪ (Z ∩AE(Ph))) +
∑

X∈P−Ph

(k − h(X)) + |K|+ k(|V | − |P|)

≥ r(Z ∩A(Ph)) + r((Z ∩A(Ph)) ∪ (Z ∩AE(Ph))) + k(|P| − |Ph|)− h(∪Ph) + |K|+ k(|V | − |P|)
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= r(Z ∩A(Ph)) + r((Z ∩A(Ph)) ∪ (Z ∩AE(Ph)))− k|Ph| − h(∪Ph) + |K|+ k|V |

Using (29) and the submodularity of r, we get

r(Z∩A(Ph))+r((Z∩A(Ph))∪(Z∩AE(Ph))) ≥ r(A(Ph)∪(Z∩AE(Ph)))+r((Z∩A(Ph))∩(Z∩AE(Ph)))).

≥ r(A(Ph) ∪AE(Ph)−K) + r(∅) ≥ R(Ph)− |K|.

In the last inequality we use r(X −K) ≥ r(X)− |K|. Using the previous two inequalities, we get

rMk
F
(Z) +

∑
v∈V

min{rv(∂Z(v)), k − h(V )} ≥ R(Ph)− k|Ph| − h(∪Ph) + k|V |.

Using this inequality for h = f and (24) we get (26), and if we apply it for h = gk, we get (27).

Finally, we prove Theorem 5.4.

Proof. Necessity. The neccesity of gk ≥ f and min{g̃k(V ), l′} ≥ l is trivial. Let P be a subpartition
of V and let B be the arc set of an (f, g)-bounded k-regular (l, l′)-limited M -restricted packing of

arborescences in an orientation
−→
F of F . For a node v, let the number of v-arborescences in the

packing be q(v). Let C be a class of P. By k-regularity, there is at least k arborescences in the
packing, which have arcs induced by C. If the root of an arborescence is not in C, then it enters
it. Thus, the number of edges in B that enter C is at least k −

∑
v∈C q(v). The number of edges in

B entering a class of P is therefore at least k|P| −
∑

C∈P q̃(C) = k|P| − q̃(∪P). Since the packing

is (f, g)-bounded and (l, l′)-limited, we have q̃(∪P) ≤ min{l′ − f(∪P), g̃k(∪P)}, therefore the right
side of (24) is a lower bound on the number of edges in B, that enter a member of P. Since B is
independent in M , we get (24).

Sufficiency. Let (F = (V,E ∪ A), f, g, k, l, l′) an instance of Theorem 5.4, that satisfies the nec-
essary conditions. Since (24) holds, by Theorem 5.5/(C), (25) and (26) hold. Since gk ≥ f and
min{g̃k(V ), l′} ≥ l also hold, by Theorem 5.5/(B), T (as defined in Theorem 5.5) is nonempty, thus,
by Theorem 5.1/2./(ii), it contains an integral element x. By Theorem 5.5/(A), x is the characteristic
vector of the edge sets of an (f, g)-bounded k-regular (l, l′)-limited M -restricted packing of arbores-

cences in an orientation
−→
F = (V,

−→
E ∪ A) of F . Replacing the arcs in

−→
E with the edges in E, we get

the required packing.

If we choose the matroid in Theorem 5.4 to be a partition matroid, we can prescribe bounds on
the in-going directed edges in the packing:

Collorary 5.1. Let F = (V,E ∪ A) be a mixed graph, f, g, h : V → Z+ functions and k, l, l′ ∈
Z+ − {0}. There exists an (f, g)-bounded k-regular (l, l′)-limited packing of arborescences in F with
ϱA∩T (v) ≤ h(v) for every v ∈ V where T is the edge set of the packing, if and only if gk(v) ≥ f(v)
for every v ∈ V , min{g̃k(V ), l′} ≥ l and for every subpartition P of V∑

v∈
⋃q

i=1 Vi

min{min(v), |∂(v) ∩ ∂(Vi)|} ≥ k|P| − ϱE(P)−min{l′ − f(∪P), g̃k(∪P)} (30)

Proof. For every v ∈ V , let Mv a partition matroid with partition classes ∂A(v) and ∂E(v), and
bounds h(v) and ϱE(v) (that is, Mv|∂E(v) is the free-matroid) and let M :=

⊕
v∈V Mv. Then, an

M -restricted packing with edge set T satisfies ϱA∩T (v) ≤ h(v).
Let R be as defined in Theorem 5.4. For a subpartition P = {V1, . . . , Vq} of V :

R(P) = ϱE(P) +
∑

v∈
⋃q

i=1 Vi

min{min(v), |∂(v) ∩ ∂(Vi)|} (31)

Therefore (4.1) is equivalent to (24) with f, g, k, l, l′ and the matroid M which proves the state-
ment.
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