

Eötvös Loránd
University

Eötvös Loránd University
Faculty of Science
Department of Operations Research

Free-rooted packings of arborescences

Author:
Ábel Barabás
Applied Mathematics
MSc year 2
Advisor:
Csaba Király
Egerváry Research Group on Combinatorial Optimization (EGRES)
research assistant

1 Introduction

In this report we prove new results about packings of arborescences. An r-arborescence is a directed tree in which each node has an in-degree of 1 except the root note r, which has an in-degree of 0 . A packing of subgraphs in a graph means a collection of subrgraphs, that are edge-disjoint. The most fundamental result of the study of packings of arborescences is the following result of Edmonds ([4]):

Theorem 1.1. (Weak Edmonds Theorem [4]) Let $D=(V, A)$ a digraph and $r \in V$. There exists a packing of spanning r-arborescences in G if and only if

$$
\begin{equation*}
\varrho_{A}(X) \geq k \text { for all } \emptyset \neq X \subseteq V-r, \tag{1}
\end{equation*}
$$

where $\varrho_{A}(X)$ denotes the in-degree of X.
This result has been generalized in multiple ways. Durand de Gevigney, Nguyen and Szigeti characterized the existence of matroid-based packings of arborescences in [3] Cs. Király, Szigeti, Tanigawa characterized the existence of matroid-based and matroid-restricted packings of arborescences in [7] and Bérczi and Frank characterized the existence of free-rooted packings of arborescences ([2]): packings, where the roots of the arborescences are not given (for further definitions see later sections).

This report generalizes results on free-rooted packings of arborescences. In section 4 we characterize the existence of free-rooted matroid-based and matroid-restricted packings of arboresences and prove some corollaries. In section 5 we extend a result of Szigeti (8) about free-rooted packings of arborescences in mixed graphs. Every proof in this report is original.

2 Definitions

Given a function $f: S \rightarrow \mathbb{R}$ and a finite set $Z \subset S$, let $\widetilde{f}(Z):=\sum_{s \in Z} f(s)$. Two subsets $X, Y \subseteq S$ are intersecting, if $X \cap Y \neq \emptyset$. A set function b on the ground set S is subcardinal, if $b(X) \leq|X|$ for all $X \subseteq S$, submodular, if

$$
\begin{equation*}
b(X)+b(Y) \geq b(X \cap Y)+b(X \cup Y) \text { for all } X, Y \subseteq S \tag{2}
\end{equation*}
$$

and supermodular, if

$$
\begin{equation*}
b(X)+b(Y) \leq b(X \cap Y)+b(X \cup Y) \text { for all } X, Y \subseteq S \tag{3}
\end{equation*}
$$

A set function is positively intersecting submodular (positively intersecting supermodular), if (22) (respectively (3)) holds for intersecting subsets of S, for which $p(X)>0, p(Y)>0$.

Let $G=(S, T, E)$ be a bipartite graph and $p: T \rightarrow \mathbb{Z}$ a positively intersecting supermodular setfunction for which $p(\emptyset)=0$ holds. Let $|\Gamma(Y)|$ be the set of neighbours of Y in G. We say that G covers p, if $\forall Y \subseteq T: p(Y) \leq|\Gamma(Y)|$. Given a matroid $M=(S, r)$, we say that $G M$-covers p, if $\forall Y \subseteq T: p(Y) \leq r(\Gamma(Y))$.

Let $D=(V+s, A)$ be a rooted digraph, where s is called the root. The in-degree of s is 0 and the outgoing edges are called root-edges. We call an s-rooted arborescence an s-arborescence. For $X, Z \subseteq V+s, B \subseteq A$ let $\partial_{Z}(X)$ denote the set of edges that go from $Z-X$ to X and let $\varrho_{Z}(X)=\left|\partial_{Z}(X)\right|$.

Let $M_{1}=\left(\partial_{s}(V), r_{1}\right)$ be a matroid on the root-edges of D. We call a packing of s-arborescences $T_{1}, \ldots, T_{k} M_{1}$-based, if every T_{i} contains exactly one root-edge $\left(e_{i}\right)$ and, for all vertices $v \in V$, $\left\{e_{i}: v \in V\left(T_{i}\right)\right\}$ is a basis of M_{1}. Let $M_{2}=\left(A, r_{2}\right)$ be a matroid on the edges of D. We call a packing of s-arborescences M_{2}-restricted if the union of the edge sets of the arborescences in the packing is independent in M_{2}.

3 Background results

The following theorem is a stronger version of Theorem 1.

Theorem 3.1 (Strong Edmonds Theorem [4]). Let $D=(V+s, A)$ be a rooted digraph, and let $\left\{B_{1}, \ldots, B_{k}\right\}$ be a partition of its root-edges. There exists a packing of T_{1}, \ldots, T_{k} spanning sarborescences, where the root-edges of T_{i} are in B_{i} for every $i=1, \ldots, k$ if and only if $\varrho_{V}(X) \geq$ $\left|\left\{i \in\{1, \ldots, k\}: B_{i} \cap \varrho_{s}(X)=\emptyset\right\}\right|$ for all $\emptyset \neq X \subseteq V$.

In [1], Bérczi and Frank characterized the existence of a packing of spanning arborescences without specified root-sets, which we call a free-rooted packing.

Theorem 3.2. (Bérczi, Frank [1]) Let $D=(V, A)$ be a digraph with n nodes and let μ_{1}, \ldots, μ_{k} positive integers. The following statements are equivalent:
(A) There exists in D a packing of k edge-disjoint spanning arborescences B_{1}, \ldots, B_{k}, for which $\left|B_{i}\right|=\mu_{i}$ for all $i=1, \ldots, k$.
(B1) For every subpartition $\left\{V_{1}, \ldots, V_{q}\right\}$ of V :

$$
\begin{equation*}
\sum_{j=1}^{k} \max \left\{0, q-\left(n-\mu_{j}\right)\right\} \leq \sum_{i=1}^{q} \varrho\left(V_{i}\right) \tag{4}
\end{equation*}
$$

(B2) Let $[k]=\{1,2, \ldots, k\}$. For every subpartition $\left\{V_{1}, \ldots, V_{q}\right\}$ of V and for all $X \subseteq[k]$:

$$
\begin{equation*}
|[k]-X| q-\sum_{j \in[k]-X} n-\mu_{j} \leq \sum_{i=1}^{q} \varrho\left(V_{i}\right) \tag{5}
\end{equation*}
$$

Their proof relies on the following theorem:
Theorem 3.3. (Bérczi, Frank [1]) Let m_{S} be a degree-specification on S for which $\widetilde{m}_{S}(S)=\gamma$. Let p_{T} be a positively intersecting supermodular function on T with $p_{T}(\emptyset)=0$. Suppose that

$$
\begin{equation*}
m_{S}(s) \leq|T| \forall s \in S \tag{6}
\end{equation*}
$$

The following statements are equivalent:
(A) There exists a simple bipartite graph $G=(S, T, E)$, which covers p_{T} and fits the degreespecification m_{S}
(B1) For every subpartition $\left\{T_{1}, \ldots, T_{q}\right\}$ of T and $X \subseteq S$:

$$
\begin{equation*}
\widetilde{m}_{S}(X)+\sum_{i=1}^{q} p_{T}\left(T_{i}\right)-q|X| \leq \gamma \tag{7}
\end{equation*}
$$

(B2) For every subpartition $\left\{T_{1}, \ldots, T_{q}\right\}$ of T :

$$
\begin{equation*}
\sum_{i=1}^{q} p_{T}\left(T_{i}\right) \leq \sum_{s \in S} \min \left\{m_{S}(s), q\right\} \tag{8}
\end{equation*}
$$

In [2], a generalization of Theorem 3.3 is provided:
Theorem 3.4. (Bérczi, Frank [2]) We are given a matroid $M=(S, r)$, a positively intersecting supermodular function p_{T} on T and a degree-specification m_{S} on S, for which $\widetilde{m}_{S}(S)=\gamma$. There is a simple bigraph $G=(S, T, E)$, which M-covers p_{T} and fits m_{S} if and only if

$$
\begin{equation*}
m_{S}(s) \leq|T| \forall s \in S \tag{9}
\end{equation*}
$$

and for every subpartition $\left\{T_{1}, \ldots, T_{q}\right\}$ of T and $X \subseteq S$:

$$
\begin{equation*}
\widetilde{m}_{S}(X)+\sum_{i=1}^{q} p_{T}\left(T_{i}\right)-q r(X) \leq \gamma \tag{10}
\end{equation*}
$$

In [3], Durand de Gevigney, Nguyen and Szigeti characterized the existence of so called matroidbased packings of arborescences:

Theorem 3.5. (Durand de Gevigney, Nguyen, Szigeti [3]) We are given a graph $D=(V+s, A)$ and a matroid $M=\left(\partial_{s}(V), r\right)$. There is an M-based packing of s-arborescences in D if and only if

$$
\begin{equation*}
\varrho_{V}(X) \geq r(M)-r\left(\partial_{s}(X)\right) \tag{11}
\end{equation*}
$$

Furthermore, if we want the S to be the root set of arborescences, then the following must also hold

$$
\begin{equation*}
\partial_{s}(v) \text { is independent in } M \text { for every } v \in V \tag{12}
\end{equation*}
$$

The following theorem characterizes the existence of matroid-based and matroid-restricted packings of s-arborescence, which is a generalization of Theorem 3.5

Theorem 3.6. (Cs. Király, Szigeti, Tanigawa (7]) We are given a graph $D=(V+s, A)$, a matroid $M_{1}=\left(\partial_{s}(V), r_{1}\right)$ with a rank function r_{1}, a matroid M_{2} on A, which is the direct sum of the matroids $M_{v}=\left(\partial(v), r_{v}\right)$. There exist in D an M_{1}-based M_{2}-restricted packing of s-arborescences if and only if

$$
\begin{equation*}
r_{1}(F)+r_{2}(\partial(X)-F) \geq r_{1}\left(\partial_{s}(V)\right) \tag{13}
\end{equation*}
$$

for all $\emptyset \neq X \subseteq V$ and $F \subseteq \partial_{s}(X)$. If on the neighbouring edges of $s M_{2}=\left.\left.M_{2}\right|_{\partial_{s}(V)} \oplus M_{2}\right|_{E(V)}$ and $\left.M_{2}\right|_{\partial_{s}(V)}$ is the free matroid, then the condition is the following:

$$
\begin{equation*}
r_{1}\left(\partial_{s}(X)\right)+r_{2}\left(\partial(X)-\partial_{s}(X)\right) \geq r_{1}\left(\partial_{s}(V)\right) \tag{14}
\end{equation*}
$$

for all $\emptyset \neq X \subseteq V$.

4 Free-rooted packings of arborescences with matroid constraints

In this section we characterize the existence of free-rooted matroid-based and matroid-restricted packings of arborescences, give two characterizations of the existence of free-rooted matroid-based packings of arborescences with an in-degree prescription and provide a new characterization for the existence of a free-rooted arborescence packing with an in-degree prescription.

Using Theorem 3.6 and Theorem 3.4 , we can characterize the existence of a free-rooted matroidbased and matroid restricted packing of arborescences.

Theorem 4.1. Let $D=(V, A)$ be a digraph, let $M_{1}=\left(S, r_{1}\right)$ be a matroid with rank function r_{1} and rank k and let M_{2} be a matroid on A which is the direct sum of the matroids $M_{v}=\left(\partial(v), r_{v}\right)$. Let s be a node not in V. The following statements are equivalent:
(A) We can add new possibly parallel arcs from s to some of the nodes of V and we can assigne the elements of S to the new edges such that there exists an M_{1}-based M_{2}^{\prime}-restricted packing of s-arborescences, where M_{2}^{\prime} the direct sum of the free matroid on the new edges and M_{2}.
(B) For every subpartition $\left\{V_{1}, \ldots, V_{q}\right\}$ of V and $X \subseteq S$:

$$
\begin{equation*}
\left(k-r_{1}(X)\right) q-|S-X| \leq \sum_{i=1}^{q} r_{2}\left(\partial\left(V_{i}\right)\right) \tag{15}
\end{equation*}
$$

Proof. Necessity. Suppose that such a packing exists. Then at most $r_{2}(\partial(Y))$ and at least $k-\partial_{s}(Y)$ edges of the packing enter a set $Y \subset V$, thus

$$
\sum_{i=1}^{q}\left(k-r_{1}\left(\partial_{s}\left(V_{i}\right)\right)\right) \leq \sum_{i=1}^{q} r_{2}\left(\partial\left(V_{i}\right)\right)
$$

Using the properties of the rank function we can show that, for every $X \subseteq S$

$$
\left.\sum_{i=1}^{q} r_{1}\left(\partial_{s}\left(V_{i}\right)\right) \leq \sum_{i=1}^{q} r_{1}\left(\partial_{s}\left(V_{i}\right) \cap X\right)+r_{1}\left(\partial_{s}\left(V_{i}\right)-X\right)\right) \leq q r_{1}(X)+|S-X|
$$

Hence

$$
\sum_{i=1}^{q} r_{2}\left(\partial\left(V_{i}\right)\right) \geq \sum_{i=1}^{q}\left(k-r_{1}\left(\partial_{s}\left(V_{i}\right)\right)\right) \geq q k-q r_{1}(X)-|S-X|
$$

Sufficiency. Let $m_{S}: S \rightarrow \mathbb{Z}_{+}$be 1 for every element of S. Let $T:=V$ and let us define the following intersecting supermodular function on T :

$$
p_{T}(Y)= \begin{cases}k-r_{2}(\partial(Y)) & \varnothing \subset Y \subseteq T \\ 0 & Y=\varnothing\end{cases}
$$

From the conditions of the theorem:

$$
\begin{gathered}
\left(k-r_{1}(X)\right) q-\sum_{i=1}^{q} r_{2}\left(\partial\left(V_{i}\right)\right) \leq|S-X|=\widetilde{m}_{S}(S-X)=\widetilde{m}_{S}(S)-\widetilde{m}_{S}(X) \\
-r_{1}(X) q+\sum_{i=1}^{q}\left(k-r_{2}\left(\partial\left(V_{i}\right)\right)\right) \leq \widetilde{m}_{S}(S)-\widetilde{m}_{S}(X) \\
\sum_{i=1}^{q} p_{T}\left(V_{i}\right)+\widetilde{m}_{S}(X)-r_{1}(X) q \leq \widetilde{m}_{S}(S)
\end{gathered}
$$

This is the condition of Theorem 3.4, therefore there exists a simple bipartite graph $G=(S, V, E)$, which covers p_{T} and satisfies m_{S}, that is $r_{1}(\Gamma(Y)) \geq k-\varrho(Y) \forall Y \subset V$. Direct the edges of G from S to T, add the edges of D in T and contract the nodes of S into a new node $s . \Gamma(Y)=\partial_{s}(Y)$ holds therefore, since G covers $p_{T}, r_{1}\left(\partial_{s}(Y)\right) \geq k-r_{2}(\partial(Y))$ holds, which is the condition of Theorem 3.6 with matroids M_{1} and M_{2}^{\prime}, which means that there exists an M_{1}-based M_{2}-restricted packing of s-arborescences.

Using the previous theorem, we can characterize the existence of a free-rooted matroid-based packing of arborescences with an in-degree prescription:

Collorary 4.1. Let $M=(S, r)$ be a matroid with rank function r, let $D=(V, A)$ be a digraph with n nodes and let $m_{i n}: V \rightarrow \mathbb{Z}^{+}$be an in-degree prescription for which $0 \leq m_{\text {in }}(v) \leq \varrho_{D}(v)$, $m_{\text {in }}(V) \leq r(M)$ for all $v \in V$ and $\widetilde{m}_{i n}(V)=|V| r(M)-|S|$ holds. Let s be a node not in V. The following statements are equivalent:
(A) We can add new arcs from s to some of the nodes of V and we can assigne the elements of S to the new edges such that there exists an M-based s-arborescence packing and if the edge set of the packing whitout the root edges is F, then $\varrho_{F}(v)=m_{i n}(v)$ holds for every $v \in V$.
(B) For all $X \subseteq S$ and subpartition $\left\{V_{1}, \ldots, V_{q}\right\}$ of V :

$$
\begin{equation*}
(r(M)-r(X)) q-|S-X| \leq \sum_{i=1}^{q} \sum_{v \in V_{i}} \min \left\{m_{i n}(v),\left|\partial(v) \cap \partial\left(V_{i}\right)\right|\right\} \tag{16}
\end{equation*}
$$

Proof. Let $M_{1}:=M$ and $\forall v \in V$ let M_{v} be the uniform matroid on $\partial(v)$ with rank $m_{\text {in }}(v)$. Let M_{2} be the direkt sum of the matroids M_{v}. Then

$$
r_{2}\left(\partial\left(V_{i}\right)\right)=\sum_{v \in V_{i}} \min \left\{m_{i n}(v),\left|\partial(v) \cap \partial\left(V_{i}\right)\right|\right\}
$$

so

$$
\sum_{i=1}^{q} r_{2}\left(\partial\left(V_{i}\right)\right)=\sum_{v \in \bigcup_{i=1} V_{i}} \min \left\{m_{i n}(v),\left|\partial(v) \cap \partial\left(V_{i}\right)\right|\right\}
$$

So (16) is the same as the condition of Theorem4.1, so there exists a M_{1}-based M_{2}-restricted packing. This means that at most $m_{i n}(v)$ arborescence enters every node v. Since $\widetilde{m}_{i n}(V)=|V| r(M)-|S|$ and the right side is the number of edges in an M-based restriction, exactly $m_{i n}(v)$ edge enters every node.

Using Collorary 4.1 we can prove a new characterization for the existence of a free-rooted packing of arborescences with an in-degree prescription.

Collorary 4.2. let $D=(V, A)$ be a digraph with n nodes and let $m_{\text {in }}: V \rightarrow \mathbb{Z}^{+}$be an in-degree prescription for which $0 \leq m_{\text {in }}(v) \leq \varrho_{D}(v)$ and $m_{\text {in }}(V) \leq k$ for all $v \in V$. Let μ_{1}, \ldots, μ_{k} be kpositive integers, for which $\sum_{i=1}^{k} \mu_{i}=\widetilde{m}_{i n}(V)$. The following statements are equivalent:
(A) There exist in D a packing of spanning arborescenses $B_{1}, \ldots, B_{k} k$, for which $\left|B_{i}\right|=\mu_{i}$ and if $\bigcup_{i=1}^{k} B_{i}=F$, than $v \in V: \varrho_{F}(V)=m_{i n}(v)$.
(B) For every subpartition $\left\{V_{1}, \ldots, V_{q}\right\}$ of V :

$$
\begin{equation*}
\sum_{i=1}^{k} \max \left\{0, q-\left(n-\mu_{i}\right)\right\} \leq \sum_{v \in \bigcup_{i=1}^{q} V_{i}} \min \left\{m_{i n}(v),\left|\partial(v) \cap \partial\left(V_{i}\right)\right|\right\} \tag{17}
\end{equation*}
$$

Proof. Let $n-\mu_{j}:=m_{j}$. This is the number of roots for a spanning arborescence with μ_{j} edges.
Let M_{1} be a partition matroid with k classes, where the size of the i. class is m_{i} and the bound is 1 for every class. (Let M_{2} be the same matroid as in the previous proof.) According to Collorary 4.1. $(A) \Leftrightarrow(r(M)-r(X)) q-|S-X| \leq \sum_{v \in \cup_{i=1}^{q} V_{i}} \min \left\{m_{i n}(v),\left|\partial(v) \cap \partial\left(V_{i}\right)\right|\right\}$. We can assume that the set X contains either the entire partition class or it is disjoint from it. This is because if it intersects a class, then if we add the elements from the class that are not contained in X, then the left side increase and the right side stays the same. So if $I=\{1, \ldots, k\}$, then

$$
(A) \Leftrightarrow(k-|X|) q-\widetilde{m}(S-X) \leq \sum_{v \in \bigcup_{i=1}^{q} V_{i}} \min \left\{m_{i n}(v),\left|\partial(v) \cap \partial\left(V_{i}\right)\right|\right\} \forall X \subseteq I
$$

The left side is maximized by $X=\{i \in I: m(i)>q\}$ and for this set $(k-|X|) q-\widetilde{m}(S-X)=$ $\sum_{i=1}^{k} \max \left\{0, q-\left(n-\mu_{i}\right)\right\}$ holds.

In [1], Bérczi and Frank provide a different characterization for the same problem with the following condition:

For all $Y \subseteq V$ and subpartition $\left\{V_{1}, \ldots, V_{q}\right\}$ of $V-Y$:

$$
\begin{equation*}
\sum_{i=1}^{k} \max \left\{0, q+|Y|-\left(n-\mu_{i}\right)\right\} \leq \widetilde{m}_{i n}(Y)+\sum_{i=1}^{q} \varrho_{D}\left(V_{i}\right) \tag{18}
\end{equation*}
$$

This result follows from the following theorem, which gives a different characterization of the existence of a free-rooted matroid-based packing of arborescences with an in-degree prescription with a seemingly weaker condition. The proof is based on Theorem 3.5 and Theorem 3.4

Theorem 4.2. Let $M=(S, r)$ be a matroid with rank function r, let $D=(V, A)$ be a digraph with n nodes and let $m_{i n}: V \rightarrow \mathbb{Z}^{+}$be an in-degree prescription for which $0 \leq m_{\text {in }}(v) \leq \varrho_{D}(v)$, $m_{\text {in }}(V) \leq r(M)$ for all $v \in V$ and $\widetilde{m}_{i n}(V)=|V| r(M)-|S|$ holds. Let s be a node not in V. The following statements are equivalent:
(A) We can add new arcs from s to some of the nodes of V and we can assign the elements of S to the new edges such that there exists an M-based s-arborescence packing and if the edge set of the packing whitout the root edges is F, then $\varrho_{F}(v)=m_{\text {in }}(v)$ holds for every $v \in V$.
(B) For all $Y \subseteq V$, subpartition $\left\{V_{1}, \ldots, V_{q}\right\}$ of $V-Y$ and $X \subseteq S$:

$$
\begin{equation*}
(|Y|+q)(r(M)-r(X))-|S-X| \leq \widetilde{m}_{i n}(Y)+\sum_{i=1}^{q} \varrho_{D}\left(V_{i}\right) \tag{19}
\end{equation*}
$$

Furthermore, (16) implies (19).
Proof. First we will prove that (16) implies (19). By Theorem 4.1, this implies the neccesity of (19).
Let us suppose that (16) holds and we are given a set $Y \in V$ and a subpartition $\mathcal{P}=\left\{V_{1}, \ldots, V_{q}\right\}$ of $V-Y$. Let us define the following partiton of $V: \mathcal{P}^{\prime}=\mathcal{P} \cup \bigcup_{v \in Y}\{v\}$. Then $\left|\mathcal{P}^{\prime}\right|=q+|Y|, m_{\text {in }}(Y)=$ $\sum_{v \in Y} \min \left\{m_{i n}(v),\left|\partial(v) \cap \partial\left(V_{i}\right)\right|\right\}$ és $\sum_{v \in \bigcup_{i=1}^{q} V_{i}} \min \left\{m_{i n}(v),\left|\partial(v) \cap \partial\left(V_{i}\right)\right|\right\} \leq \sum_{i=1}^{q} \varrho_{D}\left(V_{i}\right)$, so 19p holds.

Necessity: Let $m_{S}: S \rightarrow \mathbb{Z}_{+}$be 1 for every element of S. Let $T:=V$ and let us define the following set function on T :

$$
p_{T}(Y)= \begin{cases}r(M)-\varrho_{D}(Y) & Y \subseteq T,|Y| \geq 2 \\ r(M)-m_{i n}(v) & Y=\{v\}, v \in V \\ 0 & Y=\varnothing\end{cases}
$$

Since $m_{i n}(v) \leq \varrho_{D}(v), k-m_{i n}(v) \geq k-\varrho_{D}(v)$ so p_{T} is intersecting supermodular.
Let $\mathcal{T}=\left\{V_{1}, \ldots, V_{q}, \ldots, V_{q^{\prime}}\right\}$ be a subpartition of T, where the last $q^{\prime}-q$ class consist of only 1 element. Let $\mathcal{P}=\left\{V_{1}, \ldots, V_{q}\right\}$ and $Y=V_{q+1} \cup \cdots \cup V_{q^{\prime}}$.

From the definition of p_{T} :

$$
\sum_{i=1}^{q^{\prime}} p_{T}\left(V_{i}\right)=\sum_{i=1}^{q}\left[r(M)-\varrho_{D}\left(V_{i}\right)\right]+\sum_{i=q+1}^{q^{\prime}}\left[r(M)-\widetilde{m}_{i n}\left(V_{i}\right)\right]=(|Y|+q) r(M)-\sum_{i=1}^{q} \varrho_{D}\left(V_{i}\right)-\widetilde{m}_{i n}(Y)
$$

If we apply the condition of Theorem 3.4 to \mathcal{T} and a set $X \subset S$ and we use the previous equation for $\sum_{i=1}^{q^{\prime}} p_{T}\left(V_{i}\right)$, we get the following:

$$
\widetilde{m}_{S}(X)+(|Y|+q) r(M)-\sum_{i=1}^{q} \varrho_{D}\left(V_{i}\right)-\widetilde{m}_{i n}(Y)-q^{\prime} r(X) \leq \widetilde{m}_{S}(S)
$$

If we reorder the terms and use that $q^{\prime}=|Y|+q$ and $\widetilde{m}_{S}(S)-\widetilde{m}_{S}(X)=|S-X|$ we get the condition in (19). So there exists a simple bipartite graph $G=(S, V, E)$, which covers p_{T}-t and satisfies the degree prescription. From this we get that for every $v \in V$-re $r(M)-m_{i n}(v) \leq r\left(\Gamma_{G}(v)\right) \leq d_{G}(v)$ (where $\Gamma_{G}(v)$ is the set of neighbours of v in G), so

$$
\sum_{v \in V}\left[r(M)-m_{i n}(v)\right] \leq \sum_{v \in V} d_{G}(v)=\sum_{s \in S} d_{G}(s)=|S|
$$

Since $\widetilde{m}_{i n}(V)=|V| r(M)-|S|$, the left hand side of the previous equation is $|S|$, so we have equality everywhere, so we get $d_{G}(v)=r\left(\Gamma_{G}(v)\right)=r(M)-m_{i n}(v) \forall v \in V$.

Since $\forall Y \subset V$-re $r(M)-\varrho_{D}(Y) \leq r\left(\Gamma_{G}(Y)\right)$ also holds, if we contract S and direct its outgoing edges similarly to the ending of the previous proof, then the condition of Theorem 3.5 holds for the graph, so there exists an M-based s-arborescence packing. Since $r\left(\Gamma_{G}(v)\right)=r(M)-m_{i n}(v)$, at least $m_{i n}(v)$ arborescence enters v with a non-rootedge. We can assprimeume that exactly $r\left(\Gamma_{G}(v)\right)$ root-edge is in the packing (becouse otherwise we can exchange certain edges of the arborescences), so there exists a packing wich enters v with exactly $m_{i n}(v)$ edges.

5 Free-rooted packings of arborescences in mixed graphs

A mixed graph is a graph which has both undirected and directed edges (arcs). In this section we prove a generalization of a result on free-rooted packings of arborescences in mixed graphs by Szigeti (8).

Let $F=(V, E \cup A)$ be a mixed graph where E is the set of undirected edges and A is the set of arcs. For $B \subseteq E \cup A$, let $\boldsymbol{\partial}^{\boldsymbol{B}}(\boldsymbol{X})$ be the set of edges in B entering X. Let $\varrho^{\boldsymbol{B}}(\boldsymbol{X})=\left|\partial^{B}(X)\right|$. Orienting an edge we replace it with an arc. For $\vec{Z} \subseteq A, Z$ denotes the underlying undirected edges of \vec{Z}. For $Z \subseteq E$ and $X \subseteq V$ the set of vertices covered by Z is denoted by $\boldsymbol{V}(\boldsymbol{Z})$ and the set of edges in Z that are induced by X is denoted by $\boldsymbol{Z}(\boldsymbol{X})$. A mixed r-arborescence is a mixed graph
that can be oriented to be an r-arborescence. For a family of sets \mathcal{P} on V and $B \subseteq A \cup E$ let $\boldsymbol{\partial}_{B}(\mathcal{P})$ be the set of (directed and undirected) edges in B, that enter a member of \mathcal{P} and $\varrho_{B}(\mathcal{P}):=\left|\partial_{B}(\mathcal{P})\right|$. If $f, v: V \rightarrow \mathbb{Z}_{+}$, then we call a packing of arborescences $(\boldsymbol{f}, \boldsymbol{g})$-bounded, if for each $v \in V$, the number of v-arborescences in the packing is between $f(v)$ and $g(v)$. For $k, l, l^{\prime} \in \mathbb{Z}_{+}-\{0\}$ a packing of arborescences is $\left(\boldsymbol{l}, \boldsymbol{l}^{\prime}\right)$-bounded if the number of arborescences in the packing is between l and l^{\prime}, and \boldsymbol{k}-regular, if each vertex is in exactly k arborescences in the packing. We call a packing of mixed arborescences (f, g)-bounded $/\left(l, l^{\prime}\right) / k$-regular, if we can orient the undirected edges such that we get an (f, g)-bounded $/\left(l, l^{\prime}\right) / k$-regular packing of arborescences.

For a graph $G=(V, E)$, let $\mathbf{M}_{\mathbf{G}}$ be the graphic matroid of G, and let $\mathbf{M}_{\mathbf{G}}^{\mathbf{k}}$ be the k-graphic matroid of G, that is the k-sum of M_{G}, which is a matroid on V, where a set is independent if and only if it can be partitioned into k independent sets of M_{G}. Let $F=(V, E \cup A)$ be a mixed graph. For a partition \mathcal{P} of V, let $\boldsymbol{A}(\mathcal{P})$ and $\boldsymbol{E}(\mathcal{P})$ be the set of directed and undirected edges entering a member of \mathcal{P}. Let $\mathbf{G}_{\mathbf{F}}=\left(V, E \cup E_{A}\right)$ be the underlying undirected graph of F, and $\mathbf{D}_{\mathbf{F}}=\left(V, A_{E} \cup A\right)$ the directed extension of F, where $A_{E}=\bigcup_{e \in E} A_{e}$, and if $e=u v, A_{e}=\{\overrightarrow{u v}, \overrightarrow{v u}\}(\overrightarrow{u v}$ is an arc from u to v). The extended k-hipergraphic matroid $\mathbf{M}_{\mathbf{F}}^{\mathbf{k}}$ of F is a matroid on $A \cup A_{E}$, which we get from $M_{G_{F}}^{k}$ by replacing each edge $e \in E$ with two paralell copies of itself, associating these edges to the corresponding edges in A_{E}, and associating the edges of E_{A} with the corresponding arcs of A. It is shown in [6], that the rank function of M_{F}^{k} is the following $\left(Z \subseteq A \cup A_{E}\right)$:

$$
\begin{equation*}
r_{M_{F}^{k}}(Z)=\min \left\{|Z \cap A(\mathcal{P})|+\left|\left\{e \in E(\mathcal{P}): Z \cap A_{e} \neq \emptyset\right\}\right|+k(|V|-|\mathcal{P}|): \mathcal{P} \text { is a partition of } V\right\} \tag{20}
\end{equation*}
$$

Let p and b be two set functions on S. For a vector $x \in \mathbb{R}^{S}$ and $Z \subseteq S$, let $\widetilde{x}(Z):=\sum_{s \in S} x_{s}$. The polyhedron $\boldsymbol{Q}(\boldsymbol{p}, \boldsymbol{b})=\left\{x \in \mathbb{R}^{S}: p(Z) \leq \widetilde{x}(Z) \leq b(Z) \forall Z \subseteq S\right\}$ is called a generalized-polymatroid or g-polymatroid if p and b have the following properties: $p(\emptyset)=b(\emptyset), p$ is supermodular, b is submodular and $b(X)-b(Y) \geq b(X-Y)-p(Y-X)$ for all $X, Y \subseteq S$. The Minkowski sum of the n g-polymatroids $Q\left(p_{i}, b_{i}\right)$ is denoted by $\sum_{1}^{n} Q\left(p_{i}, b_{i}\right)$. For $\alpha, \beta \in \mathbb{R}$, the polyhedron $\mathbf{K}(\boldsymbol{\alpha}, \boldsymbol{\beta})=\left\{x \in \mathbb{R}^{S}: \alpha \leq \widetilde{x}(S) \leq\right.$ $\beta\}$ is called a plank. We will use the following results on g-polymatroids:
Theorem 5.1 (Frank [5). 1. Let $Q(p, b)$ be a g-polymatroid, $K(\alpha, \beta)$ a plank and $M=Q(p, b) \cap$ $K(\alpha, \beta)$.
(i) $M \neq \emptyset$ if and only if $p \leq b, \alpha \leq \beta, \beta \geq p(S)$ and $\alpha \leq b(S)$.
(ii) M is a g-polimatroid.
(iii) If $M \neq \emptyset$, then $M=Q\left(p_{\beta}^{\alpha}, q_{\beta}^{\alpha}\right)$ with

$$
\begin{aligned}
p_{\beta}^{\alpha}(Z) & =\max \{p(Z), \alpha-b(S-Z)\} \\
b_{\beta}^{\alpha}(Z) & =\min \{b(Z), \beta-p(S-Z)\}
\end{aligned}
$$

2. Let $Q\left(p_{1}, b_{1}\right)$ and $Q\left(p_{2}, b_{2}\right)$ be two non-empty g-polymatroids and $M=Q\left(p_{1}, b_{1}\right) \cap Q\left(p_{2}, b_{2}\right)$.
(i) $M \neq \emptyset$ if and only if $p_{1} \leq b_{2}$ and $p_{2} \leq b_{1}$.
(ii) If $p_{1}, b_{1}, p_{2}, b_{2}$ are integral and $M \neq \emptyset$, then M contains an integral element.
3. Let $Q\left(p_{i}, b_{i}\right)$ be n nonempty g-polimatroids. Then $\sum_{1}^{n} Q\left(p_{i}, b_{i}\right)=Q\left(\sum_{1}^{n} p_{i}, \sum_{1}^{n} b_{i}\right)$.

Theorem 5.2. (Szigeti [8]) Let $F=(V, E \cup A)$ be a mixed graph, $f, g: V \rightarrow \mathbb{Z}_{+}$functions and $k, l, l^{\prime} \in \mathbb{Z}_{+}-\{0\}$. There exists an (f, g)-bounded k-regular ($\left.l, l^{\prime}\right)$-limited packing of arborescences in F if and only if $g_{k}(v) \geq f(v)$ for every $v \in V, \min \left\{\widetilde{g}_{k}(V), l^{\prime}\right\} \geq l$ and

$$
\begin{equation*}
\varrho_{A \cup E}(\mathcal{P}) \geq k|\mathcal{P}|-\min \left\{l^{\prime}-f(\overline{\cup \mathcal{P}}), \widetilde{g}_{k}(\cup \mathcal{P})\right\} \text { for every subpartition } \mathcal{P} \text { of } V \tag{21}
\end{equation*}
$$

Theorem 5.3. (Szigeti [8]) Let $F=(V, E \cup A)$ be a mixed graph, $f, g: V \rightarrow \mathbb{Z}_{+}$functions and $k, l, l^{\prime} \in \mathbb{Z}_{+}-\{0\}$. Let $M_{v}:=\left(\partial^{A \cup A_{e}}(v), r_{v}\right)$ be the free matroid for every $v \in V$, and let $M:=$ $\bigoplus_{v \in V} M_{v}$ with a rankfunction r. Let M_{F}^{k} be the extended k-graphic matroid of F on $A \cup A_{e}$. Let $T:=\left(\sum_{v \in V}\left(\left(Q\left(0, r_{v}\right)\right) \cap K\left(k-g_{k}(v), k-f(v)\right)\right) \cap K\left(k|V|-l^{\prime}, k|V|-l\right) \cap Q\left(0, r_{M_{F}^{k}}\right)\right)$.
(A) The characteristic vectors of the edge sets of (f, g)-bounded k-regular $\left(l, l^{\prime}\right)$-limited M-restricted packings of arborescences in orientations of F are exactly the integer points of T.
(B) $T \neq \emptyset$ if and only if $g_{k}(v) \geq f(v)$ for every $v \in V, \min \left\{\widetilde{g}_{k}(V), l^{\prime}\right\} \geq l$ and for every $Z \subseteq A \cup A_{E}$,

$$
\begin{gather*}
\sum_{v \in V} \max \left\{0, k-g_{k}(v)-r_{v}\left(\partial^{Z}(v)\right)\right\} \leq r_{M_{F}^{k}}(\bar{Z}) \tag{22}\\
k|V|-l^{\prime}-\sum_{v \in V} \min \left\{r_{v}\left(\partial^{Z}(v)\right), k-f(v)\right\} \leq r_{M_{F}^{k}}(\bar{Z}) \tag{23}
\end{gather*}
$$

(C) 25) and (26) are equivalent to (24.

Theorem 5.4. Let $F=(V, E \cup A)$ be a mixed graph, $f, g: V \rightarrow \mathbb{Z}_{+}$functions and $k, l, l^{\prime} \in \mathbb{Z}_{+}-\{0\}$. Let $M_{v}:=\left(\partial^{A \cup A_{e}}(v), r_{v}\right)$ be a matroid for every $v \in V$, and let $M:=\bigoplus_{v \in V} M_{v}$ with a rankfunction r. There exists an (f, g)-bounded k-regular $\left(l, l^{\prime}\right)$-limited M-restricted packing of arborescences in F if and only if $g_{k}(v) \geq f(v)$ for every $v \in V, \min \left\{\widetilde{g}_{k}(V), l^{\prime}\right\} \geq l$ and

$$
\begin{equation*}
R(\mathcal{P}) \geq k|\mathcal{P}|-\min \left\{l^{\prime}-f(\overline{\cup \mathcal{P}}), \widetilde{g}_{k}(\cup \mathcal{P})\right\} \text { for every subpartition } \mathcal{P} \text { of } V \tag{24}
\end{equation*}
$$

where $R(\mathcal{P})=\max \left\{r\left(\overrightarrow{\partial_{A \cup E}(\mathcal{P})}\right\}\right.$, where $\overrightarrow{\partial_{A \cup E}(\mathcal{P})}$ is an orientation of $\partial_{A \cup E}(\mathcal{P})$ in which every undirected edge is oriented in such a way that it enters a member of \mathcal{P}.

The proof of this theorem relies on the following theorem:
Theorem 5.5. Let $F=(V, E \cup A)$ be a mixed graph, $f, g: V \rightarrow \mathbb{Z}_{+}$functions and $k, l, l^{\prime} \in \mathbb{Z}_{+}-\{0\}$. Let $M_{v}:=\left(\partial^{A \cup A_{e}}(v), r_{v}\right)$ be a matroid for every $v \in V$, and let $M:=\bigoplus_{v \in V} M_{v}$ with a rankfunction r. Let M_{F}^{k} be the extended k-graphic matroid of F on $A \cup A_{e}$. Let $T:=\left(\sum_{v \in V}\left(\left(Q\left(0, r_{v}\right)\right) \cap K(k-\right.\right.$ $\left.\left.\left.g_{k}(v), k-f(v)\right)\right) \cap K\left(k|V|-l^{\prime}, k|V|-l\right) \cap Q\left(0, r_{M_{F}^{k}}\right)\right)$.
(A) The characteristic vectors of the edge sets of (f, g)-bounded k-regular $\left(l, l^{\prime}\right)$-limited M-restricted packings of arborescences in orientations of F are exactly the integer points of T.
(B) $T \neq \emptyset$ if and only if $g_{k}(v) \geq f(v)$ for every $v \in V, \min \left\{\widetilde{g}_{k}(V), l^{\prime}\right\} \geq l$ and for every $Z \subseteq A \cup A_{E}$,

$$
\begin{gather*}
\sum_{v \in V} \max \left\{0, k-g_{k}(v)-r_{v}\left(\partial^{Z}(v)\right)\right\} \leq r_{M_{F}^{k}}(\bar{Z}) \tag{25}\\
k|V|-l^{\prime}-\sum_{v \in V} \min \left\{r_{v}\left(\partial^{Z}(v)\right), k-f(v)\right\} \leq r_{M_{F}^{k}}(\bar{Z}) \tag{26}
\end{gather*}
$$

(C) (24) implies (25) and (26).

Proof. (A)
By Theorem 5.3 (A), the integer points of T are characteristic vectors of the edge sets of (f, g) bounded k-regular $\left(l, l^{\prime}\right)$-limited packings of arborescences in orientations of F. Since an integer point of T is also in $\sum_{v \in V} Q\left(0, r_{v}\right)$, the corresponding packing is also M-based.

By the other direction of Theorem5.3/(A), since the characteristic vector of an M-based packing must be in $\sum_{v \in V} Q\left(0, r_{v}\right)$, the integer points of T are exactly the characteristic vectors of the edge sets of the required packings.
(B)

By Theorem 5.1. $\left.1 Q\left(0, r_{v}\right)\right) \cap K\left(k-g_{k}(v), k-f(v)\right)$ is non empty if and only if $k-g_{k}(v) \leq k-f(v)$ (which is equivalent to $\left.g_{k}(v) \geq f(v)\right), k-f(v) \geq 0$ (which is true because $0 \leq k-g_{k}(v) \leq k-f(v)$) and $k-g_{k}(v) \leq r_{v}\left(\partial^{A \cup A_{E}}(v)\right)$ (which we will see later).

If $\left.Q\left(0, r_{v}\right)\right) \cap K\left(k-g_{k}(v), k-f(v)\right) \neq \emptyset$ then it is equal to $Q\left(p_{v}, b_{v}\right)$, where by Theorem 5.1 $1 /(\mathrm{iii})$, for $Z \subseteq A \cup A_{E}$ and $Z_{v}=Z \cap \partial^{A \cup A_{E}}(v)$,

$$
\begin{gathered}
p_{v}\left(Z_{v}\right)=\max \left\{0, k-g_{k}(v)-r\left(\partial^{\bar{Z}_{v}}(v)\right)\right\} \\
b_{v}\left(Z_{v}\right)=\min \left\{r\left(\partial^{Z_{v}}(v), k-f(v)\right\}\right.
\end{gathered}
$$

By Theorem 5.1.3, $\sum_{v \in V} Q\left(p_{v}, b_{v}\right)=Q\left(p_{\Sigma}, b_{\Sigma}\right)$, where $p_{\Sigma}=\sum_{v \in V} p_{v}, b_{\Sigma}=\sum_{v \in V} b_{v}$.

By Theorem 5.1 $1, Q\left(0, r_{M_{F}^{k}}^{k}\right) \cap K\left(k|V|-l^{\prime}, k|V|-l\right) \neq \emptyset$ if and only if $k|V|-l^{\prime} \leq k|V|-l$ (which is equivalent to the second half of $\left.\min \left\{\widetilde{g}_{k}(V), l^{\prime}\right\} \geq l\right), k|V|-l \geq 0$ (which follows from $\left.k|V|-l \geq \widetilde{g}_{k}(V)-l \geq 0\right)$ and $k|V|-l^{\prime} \leq r_{M_{F}^{k}}\left(A \cup A_{e}\right)$, which is 26) for $Z=A \cup A_{E}$. Then $Q\left(0, r_{M_{F}^{k}}^{k}\right) \cap K\left(k|V|-l^{\prime}, k|V|-l\right)=Q(p, b)$, where $p(Z)=\max \left\{0, k|V|-l^{\prime}-r_{M_{F}^{k}}(\bar{Z})\right\}$ and $b(Z)=$ $\min \left\{r_{M_{F}^{k}}(Z), k|V|-l\right\}$.

By Theorem 5.1. $2, Q(p, b) \cap Q\left(p_{\Sigma}, b_{\Sigma}\right) \neq \emptyset$ if and only if $p_{\Sigma} \leq b$ and $p \leq b_{\Sigma}$, that is

$$
\sum_{v \in V} \max \left\{0, k-g_{k}(v)-r_{v}\left(\partial^{\bar{Z}_{v}}(v)\right)\right\} \leq \min \left\{r_{M_{F}^{k}}(Z), k|V|-l\right\}
$$

and

$$
\max \left\{0, k|V|-l^{\prime}-r_{M_{F}^{k}}(\bar{Z})\right\} \leq \sum_{v \in V} \min \left\{r_{v}\left(\partial^{Z_{v}}(v)\right), k-f(v)\right\}
$$

The first inequality is equivalent to 25 by the fact, that $\max \left\{0, k|V|-l^{\prime}-r_{M_{F}^{k}}(\bar{Z})\right\} \leq \sum_{v \in V} k-$ $g_{k}(v) \leq k|V|-l$ (here we use that $\min \left\{g_{k}(V), l^{\prime}\right\} \geq l$. The first part of the second inequality is equivalent to $k-f(v) \geq k-g_{k}(v) \geq 0\left(r_{v} \geq 0\right.$ always holds), and the second part is equivalent to (26).

Finally, $k-g_{k}(v) \leq r_{v}\left(\partial^{A \cup A_{E}}(v)\right)$ follows from $p_{\Sigma}(\emptyset) \leq b(\emptyset)$ and the proof is complete.
(C)

Note, that (25) is equivalent to

$$
\begin{equation*}
k|V|-g_{k}(V)-\sum_{v \in V} \min \left\{r_{v}\left(\partial^{Z}(v)\right), k-g_{k}(V)\right\} \leq r_{M_{F}^{k}}(\bar{Z}) . \tag{27}
\end{equation*}
$$

Let $Z \subseteq A \cup A_{E}$. By 20), there exists a partition \mathcal{P} of V such that for $K=\left\{e \in E(\mathcal{P}): \bar{Z} \cap A_{e} \neq\right.$ $\emptyset\}:$

$$
\begin{equation*}
r_{M_{F}^{k}}(\bar{Z})=|\bar{Z} \cap A(\mathcal{P})|+|K|+k(|V|-|P|) . \tag{28}
\end{equation*}
$$

Let $\mathcal{P}_{h}:=\left\{X \in \mathcal{P}: r_{v}\left(\partial^{Z}(v)\right) \leq k-h(v)(\forall v \in V)\right\}$, where $h \in\left\{f, g_{k}\right\}$. Then \mathcal{P}_{h} is a subpartition of V and for every $X \in \mathcal{P}-\mathcal{P}_{h}$ there exists a $v_{X} \in X$ such that $r_{v}\left(\partial^{Z}(v)\right)>k-h(v)$.

By the definition of K, we have

$$
\begin{equation*}
A_{E\left(\mathcal{P}_{h}\right)-K} \subseteq Z \cap A_{E\left(\mathcal{P}_{h}\right)} \tag{29}
\end{equation*}
$$

Then, by 28, the definition of \mathcal{P}_{h} and $v_{X}, r_{v}\left(\partial^{Z}(v)\right) \geq 0, k-h \geq 0, h \geq 0$ and $r(X) \leq|X|$ (subcardinality of the rank function of a matroid), we have:

$$
\begin{gathered}
r_{M_{F}^{k}}(\bar{Z})+\sum_{v \in V} \min \left\{r_{v}\left(\partial^{Z}(v)\right), k-h(V)\right\}= \\
=|\bar{Z} \cap A(\mathcal{P})|+|K|+k(|V|-|\mathcal{P}|)+\sum_{v \in \cup \mathcal{P}} \min \left\{r_{v}\left(\partial^{Z}(v)\right), k-h(V)\right\}+\sum_{v \in \overline{\mathcal{P}}} \min \left\{r_{v}\left(\partial^{Z}(v)\right), k-h(V)\right\} \\
\geq\left|\bar{Z} \cap A\left(\mathcal{P}_{h}\right)\right|+\sum_{v \in \cup \mathcal{P}} r_{v}\left(\partial^{Z}(v)\right)+\sum_{X \in \mathcal{P}-\mathcal{P}_{h}} \sum_{v \in X} \min \left\{r_{v}\left(\partial^{Z}(v)\right), k-h(V)\right\}+|K|+k(|V|-|\mathcal{P}|) \\
\geq\left|\bar{Z} \cap A\left(\mathcal{P}_{h}\right)\right|+r\left(\left(Z \cap A\left(\mathcal{P}_{h}\right)\right) \cup\left(Z \cap A_{E\left(\mathcal{P}_{h}\right)}\right)\right)+\sum_{X \in \mathcal{P}-\mathcal{P}_{h}}\left(k-h\left(v_{X}\right)\right)+|K|+k(|V|-|\mathcal{P}|) \\
\geq r\left(\bar{Z} \cap A\left(\mathcal{P}_{h}\right)\right)+r\left(\left(Z \cap A\left(\mathcal{P}_{h}\right)\right) \cup\left(Z \cap A_{E\left(\mathcal{P}_{h}\right)}\right)\right)+\sum_{X \in \mathcal{P}-\mathcal{P}_{h}}(k-h(X))+|K|+k(|V|-|\mathcal{P}|)
\end{gathered}
$$

$$
\geq r\left(\bar{Z} \cap A\left(\mathcal{P}_{h}\right)\right)+r\left(\left(Z \cap A\left(\mathcal{P}_{h}\right)\right) \cup\left(Z \cap A_{E\left(\mathcal{P}_{h}\right)}\right)\right)+k\left(|\mathcal{P}|-\left|\mathcal{P}_{h}\right|\right)-h\left(\overline{\cup \mathcal{P}_{h}}\right)+|K|+k(|V|-|\mathcal{P}|)
$$

$$
=r\left(\bar{Z} \cap A\left(\mathcal{P}_{h}\right)\right)+r\left(\left(Z \cap A\left(\mathcal{P}_{h}\right)\right) \cup\left(Z \cap A_{E\left(\mathcal{P}_{h}\right)}\right)\right)-k\left|\mathcal{P}_{h}\right|-h\left(\overline{\cup \mathcal{P}_{h}}\right)+|K|+k|V|
$$

Using (29) and the submodularity of r, we get

$$
\begin{gathered}
\left.r\left(\bar{Z} \cap A\left(\mathcal{P}_{h}\right)\right)+r\left(\left(Z \cap A\left(\mathcal{P}_{h}\right)\right) \cup\left(Z \cap A_{E\left(\mathcal{P}_{h}\right)}\right)\right) \geq r\left(A\left(\mathcal{P}_{h}\right) \cup\left(Z \cap A_{E\left(\mathcal{P}_{h}\right)}\right)\right)+r\left(\left(\bar{Z} \cap A\left(\mathcal{P}_{h}\right)\right) \cap\left(Z \cap A_{E\left(\mathcal{P}_{h}\right)}\right)\right)\right) . \\
\geq r\left(A\left(\mathcal{P}_{h}\right) \cup A_{E\left(\mathcal{P}_{h}\right)-K}\right)+r(\emptyset) \geq R\left(\mathcal{P}_{h}\right)-|K| .
\end{gathered}
$$

In the last inequality we use $r(X-K) \geq r(X)-|K|$. Using the previous two inequalities, we get

$$
r_{M_{F}^{k}}(\bar{Z})+\sum_{v \in V} \min \left\{r_{v}\left(\partial^{Z}(v)\right), k-h(V)\right\} \geq R\left(\mathcal{P}_{h}\right)-k\left|\mathcal{P}_{h}\right|-h\left(\overline{\cup \mathcal{P}_{h}}\right)+k|V|
$$

Using this inequality for $h=f$ and 24 we get 26), and if we apply it for $h=g_{k}$, we get 27 .

Finally, we prove Theorem 5.4.
Proof. Necessity. The neccesity of $g_{k} \geq f$ and $\min \left\{\widetilde{g}_{k}(V), l^{\prime}\right\} \geq l$ is trivial. Let \mathcal{P} be a subpartition of V and let B be the arc set of an (f, g)-bounded k-regular $\left(l, l^{\prime}\right)$-limited M-restricted packing of arborescences in an orientation \vec{F} of F. For a node v, let the number of v-arborescences in the packing be $q(v)$. Let C be a class of \mathcal{P}. By k-regularity, there is at least k arborescences in the packing, which have arcs induced by C. If the root of an arborescence is not in C, then it enters it. Thus, the number of edges in B that enter C is at least $k-\sum_{v \in C} q(v)$. The number of edges in B entering a class of \mathcal{P} is therefore at least $k|\mathcal{P}|-\sum_{C \in \mathcal{P}} \widetilde{q}(C)=k|\mathcal{P}|-\widetilde{q}(\cup \mathcal{P})$. Since the packing is (f, g)-bounded and $\left(l, l^{\prime}\right)$-limited, we have $\widetilde{q}(\cup \mathcal{P}) \leq \min \left\{l^{\prime}-f(\cup \mathcal{P}), \widetilde{g}_{k}(\cup \mathcal{P})\right\}$, therefore the right side of (24) is a lower bound on the number of edges in B, that enter a member of \mathcal{P}. Since B is independent in M, we get (24).

Sufficiency. Let $\left(F=(\overline{V, E} \cup A), f, g, k, l, l^{\prime}\right)$ an instance of Theorem 5.4, that satisfies the necessary conditions. Since (24) holds, by Theorem 5.5 (C), 25) and 26) hold. Since $g_{k} \geq f$ and $\min \left\{\widetilde{g}_{k}(V), l^{\prime}\right\} \geq l$ also hold, by Theorem $5.5 /(\mathrm{B}), T$ (as defined in Theorem 5.5) is nonempty, thus, by Theorem 5.1/2./(ii), it contains an integral element x. By Theorem 5.5/(A), x is the characteristic vector of the edge sets of an (f, g)-bounded k-regular $\left(l, l^{\prime}\right)$-limited M-restricted packing of arborescences in an orientation $\vec{F}=(V, \vec{E} \cup A)$ of F. Replacing the arcs in \vec{E} with the edges in E, we get the required packing.

If we choose the matroid in Theorem 5.4 to be a partition matroid, we can prescribe bounds on the in-going directed edges in the packing:

Collorary 5.1. Let $F=(V, E \cup A)$ be a mixed graph, $f, g, h: V \rightarrow \mathbb{Z}_{+}$functions and $k, l, l^{\prime} \in$ $\mathbb{Z}_{+}-\{0\}$. There exists an (f, g)-bounded k-regular $\left(l, l^{\prime}\right)$-limited packing of arborescences in F with $\varrho_{A \cap T}(v) \leq h(v)$ for every $v \in V$ where T is the edge set of the packing, if and only if $g_{k}(v) \geq f(v)$ for every $v \in V, \min \left\{\widetilde{g}_{k}(V), l^{\prime}\right\} \geq l$ and for every subpartition \mathcal{P} of V

$$
\begin{equation*}
\sum_{v \in \bigcup_{i=1}^{q} V_{i}} \min \left\{m_{i n}(v),\left|\partial(v) \cap \partial\left(V_{i}\right)\right|\right\} \geq k|\mathcal{P}|-\varrho_{E}(\mathcal{P})-\min \left\{l^{\prime}-f(\overline{\cup \mathcal{P}}), \widetilde{g}_{k}(\cup \mathcal{P})\right\} \tag{30}
\end{equation*}
$$

Proof. For every $v \in V$, let M_{v} a partition matroid with partition classes $\partial_{A}(v)$ and $\partial_{E}(v)$, and bounds $h(v)$ and $\varrho_{E}(v)$ (that is, $M_{v} \mid \partial_{E}(v)$ is the free-matroid) and let $M:=\bigoplus_{v \in V} M_{v}$. Then, an M-restricted packing with edge set T satisfies $\varrho_{A \cap T}(v) \leq h(v)$.

Let R be as defined in Theorem 5.4 For a subpartition $\mathcal{P}=\left\{V_{1}, \ldots, V_{q}\right\}$ of V :

$$
\begin{equation*}
R(\mathcal{P})=\varrho_{E}(\mathcal{P})+\sum_{v \in \bigcup_{i=1}^{q} V_{i}} \min \left\{m_{i n}(v),\left|\partial(v) \cap \partial\left(V_{i}\right)\right|\right\} \tag{31}
\end{equation*}
$$

Therefore (4.1) is equivalent to 24 with f, g, k, l, l^{\prime} and the matroid M which proves the statement.

References

[1] Kristóf Bérczi and András Frank. Supermodularity in unweighted graph optimization i: Branchings and matchings. Mathematics of Operations Research, 43(3):726-753, 2018.
[2] Kristóf Bérczi and András Frank. Supermodularity in unweighted graph optimization ii: Matroidal term rank augmentation. Mathematics of Operations Research, 43(3):754-762, 2018.
[3] Olivier Durand de Gevigney, Viet-Hang Nguyen, and Zoltán Szigeti. Matroid-based packing of arborescences. SIAM Journal on Discrete Mathematics, 27(1):567-574, 2013.
[4] Jack Edmonds. Edge-disjoint branchings. Combinatorial algorithms, pages 91-96, 1973.
[5] András Frank. Connections in combinatorial optimization, volume 38. Oxford University Press Oxford, 2011.
[6] Florian Hörsch and Zoltán Szigeti. Packing of mixed hyperarborescences with flexible roots via matroid intersection. arXiv preprint arXiv:2012.13899, 2020.
[7] Csaba Király, Zoltán Szigeti, and Shin-ichi Tanigawa. Packing of arborescences with matroid constraints via matroid intersection. Mathematical Programming, 181:85-117, 2020.
[8] Zoltán Szigeti. Packing mixed hyperarborescences. In Proceedings of the 12th Hungarian-Japanese Symposium on Discrete Mathematics and Its Applications, 2023.

