Free-rooted arborescence packings

Barabás Ábel Adviser: Király Csaba

January 8, 2024

Free-rooted arborescence packings

<回>< E> < E> < E> <

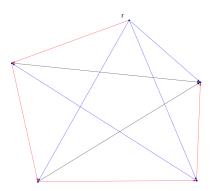
æ

Arborescence packings

arborescence: directed tree in which there is a directed path to every vertex from a root
branching: every connected component is an arborescence
arborescence/branchingpacking: a set of edge-disjoint arborescences/branchings

Theorem (Edmonds, weak form)

Let D = (V, A) be a digraph, $r \in V$ a vertex and k a positive integer. When does D contain k edgedisjoint r-rooted spanning arborescences?



Theorem (Edmonds, strong form)

Let D = (V, A) be a digraph and let $R_1, ..., R_k$ be subsets of V. When does D contain k edge-disjoint spanning branchings, with root-sets $R_1, ..., R_k$?

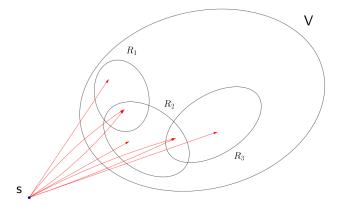
size of the root-set \leftrightarrow number of edges in the branching free-rooted packings:

Theorem (Bérczi, Frank)

Let D = (V, A) be a digraph let μ_1, \ldots, μ_k positive integers. When does D contain k edge-disjoint spanning branchings with the given sizes?

Equivalent formulation of the problem

Let s be a vertex not in V with an in-degree 0. Partition the outgoing edges (root-edges), the endpoints in the partition classes correspond to the R_i sets.



伺 と く ヨ と く ヨ と

a structure that generalizes linear independence multiple definitions (independent subsets, bases, rank) *k*-uniform matroid, partition matroid

▲□ ▶ ▲ □ ▶ ▲ □ ▶ ...

Matroid based arborescence packings

Let M_1 be a matroid on the root-edges, and M_2 a matroid on A.

Definition

An M_1 -based *s*-arborescence packing is a collection of T_1, \ldots, T_k edge-disjoint *s*-arborescences, for which every T_i contains exactly one root-edge e_i , and for all $v \in V$ vertices the set $\{e_i : v \in T_i\}$ forms a base of the matroid M_1 .

Definition

 M_2 -restricted *s*-arborescence packing is a collection of T_1, \ldots, T_k edge-disjoint *s*-arborescences, for which the set $\bigcup_{i=1}^q T_i$ is independent in M_2 .

・ロト ・四ト ・ヨト ・ヨト

Theorems used:

Theorem (Bérczi, Frank)

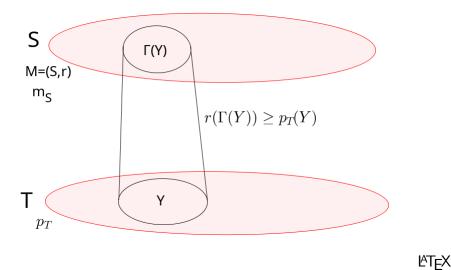
Let M = (S, r) be a matroid, p_T a positively intersecting supermodular setfunction on T and m_S an degree-prescription on S. When can we construct a simple bipartite graph G = (S, T, E), which satisfies the degree prescription and M-covers p_T , that is

$$r(\Gamma(Y)) \ge p_T(Y) \ \forall Y \subseteq T$$

?

・ロト ・ 一 ・ ・ ー ・ ・ ・ ・ ・ ・

Matroid based arborescence packings



Free-rooted arborescence packings

▲御▶ ▲ 国▶ ▲ 国▶ -

æ

Matroid based arborescence packings

Theorem (Cs. Király, Szigeti, Tanigawa)

Let D = (V + s, A) be a digraph and M_1 a matroid on the root-edges. Moreover, let M_v be a matroid on $\partial(v)$ for all $v \in V$ and let M_2 be the direct sum of the M_v matroids. When does D contain an M_1 -based M_2 -restricted s-arborescence packing?

Free rooted packings:

Theorem

We can add edges from s to V and map the elements of S to these edges such that there exists an M_1 -based M_2 -restricted s-arborescence packing if and only if

$$(k-r_1(X))q-|S-X|\leq \sum_{i=1}^q r_2(\partial(V_i))$$

for all $\{V_1, \ldots, V_q\}$ subpartitions of V and $X \subseteq S$ -re.

Let M = (S, r) be a matroid with a rank function r and let D = (V, A) be a digraph with an $m_{in} : V \to \mathbb{Z}^+$ indegree-prescription for which $0 \le m_{in}(v) \le \varrho_D(v)$ and $m_{in}(V) \le r(M)$ holds for all $v \in V$. Moreover, $\widetilde{m}_{in}(V) = |V|r(M) - |S|$. Let s be a vertex not in V.

Theorem

The following statements are equivalent:

(A) We can add edges from s to V and map the elements of S to these edges such that there exists an M-based s-arborescence packing which satisfies the indegree-prescription m_{in}

Free-rooted arborescence packings

・ロト ・雪 ト ・ヨ ト ・

Theorem

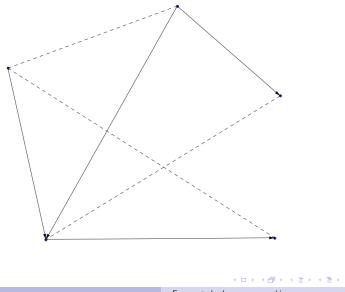
(B1) For all subpartition $\{V_1, \ldots, V_q\}$ of V

$$(r(M)-r(X))q-|S-X|\leq \sum_{v\in igcup_{i=1}^qV_i}\min\{m_{in}(v),|\partial(v)\cap\partial(V_i)|\}$$

(B2) For all $Y \subseteq V$, subpartition $\{V_1, \ldots, V_q\}$ of V - Y and $X \subseteq S$ -re:

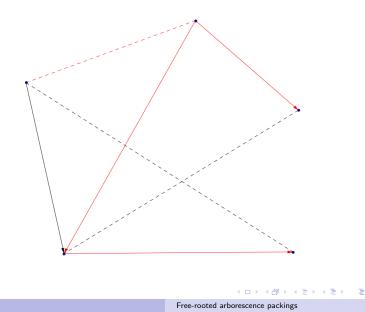
$$(|Y|+q)(r(M)-r(X))-|S-X|\leq \widetilde{m}_{in}(Y)+\sum_{i=1}^{q}\varrho_D(V_i)$$

Free-rooted arborescence packings



Free-rooted arborescence packings

PT_FX



PT_FX

Let $F = (V, E \cup A)$ be a mixed graph. Let A_E be the set of directed edges we get by directing the edges of E both ways. Let $f, g: V \to \mathbb{Z}_+$ be functions and k, l, l' positive integers.

Theorem (Szigeti)

The following statements are equivalent:

- (A) F contains an (f,g)-restricted, k-regular, (I, I')-limited arborescence packing.
- (B) (...) and for every subpartition \mathcal{P} of V

$$\varrho_{A\cup E}(\mathcal{P}) \geq k|\mathcal{P}| - \min\{l' - f(\overline{\cup \mathcal{P}}), \widetilde{g}_k(\cup \mathcal{P})\}.$$

Free-rooted arborescence packings

イロト イボト イヨト イヨト

Let $F = (V, E \cup A)$ be a mixed graph. Let A_E be the set of directed edges we get by directing the edges of E both ways. Let $f, g : V \to \mathbb{Z}_+$ be functions and k, l, l' positive integers. Moreover, let M_v be a matroid on $\partial_{A \cup A_E}(v)$ and let M be the direct sum of these matroids.

Theorem

Ekvivalensek:

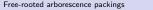
- (A) F contains an (f,g)-restricted, k-regular, (I, I')-limited M-restricted arborescence packing.
- (B) (...) and for every subpartition \mathcal{P} of V

$$R(\mathcal{P}) \geq k|\mathcal{P}| - \min\{l' - f(\overline{\cup \mathcal{P}}), \widetilde{g}_k(\cup \mathcal{P})\}.$$

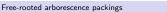
where $R(\mathcal{P}) = \max\{r(\overrightarrow{\partial_{A\cup E}(\mathcal{P})}\}, \text{ where } \overrightarrow{\partial_{A\cup E}(\mathcal{P})} \text{ is an orientation of } \partial_{A\cup E}(\mathcal{P})\text{ -nek.}$

Collorary:

 $M_{\nu}|\partial_A(\nu)$ is an uniform matroid for all $\nu \in V \longrightarrow$ upper bound on the in-going directed edges in the packing for each edge



Thank you for your attention!



<回>< E> < E> < E> <

PT_EX

э