
Quantum Acceleration for the American Option
Problem

Csatári Jakab

Supervisor: Gilyén András

2023

Abstract
In the first half of the semester, I was studying a financial problem, the American Option. I analyzed
the known LSM method for this problem and also a quantum algorithimc approach provided by J.
F. Doriguello, A. Luongo, J. Bao, P. Rebentrost and M. Santha. In essence, quantum acceleration
depends on the fact that we can estimate expected values quadratically faster with a quantum algo-
rithm. In the rest of the semester, I worked on the first known optimal algorithm for this quadratic
acceleration, from last year’s article by R. Kothari and R. O’Donnell.

1. American Option Problem
In the financial sector, the American option is one of the most tangible examples of an optimal stopping
problem. An option gives its buyer the right to buy or sell a product at a predetermined price, but at
some future date. In the case of an American option, the time within it can be exercised is arbitrary
within a specified term. In the case of a call right (option to buy), the investor benefits if the market
value of the product is higher than it was when the option was purchased.

Let us say that we have a 1-year American-style call option on a portfolio that contains 100 stocks.
This means that the option can be exercised for one year any day after purchase, but the value of all
shares changes slightly every day. The profit (or as we will refer to it later, payoff) will then be the
change in the value of the portfolio between the purchase and exercise of the option.

Suppose we model the possible market changes with probability distributions. The problem can then
be formulated as an optimal stopping problem:

Problem: Given a stochastic process, with different profits at each point in time, when is it worth
stopping so that the expected value of this profit is as high as possible?

1

Modeling of the problem:

• Let (Xt)
T
t=0 be a Markov-chain with Ω sample space and E ⊆ Rd state space. In the example

t = 0, ..., T discrete times correspond to days and Xt describes how our shares performed on the
t-th day.

• There is also a stochastic process (Zt)
T
t=0 which we call payoff from now on. The value of the

payoff for given t only depends on Xt: Zt := zt(Xt), where zt ∈ L2(E).(
L2(E) := set of squared integrable functions.

)
• Let Ut be the following:

Ut :=

{
ZT if t = T

max{Zt,E(Ut+1|Xt)} else

Then Ut describes the expected payoff if we get to time t (we have not yet exercised the option).
Given the value this way, it can be seen that it is worth selling in t if the expected payoff is not
greater later. If we have a sample X ′

0, ..., X
′
T , then the corresponding U ′

T , U
′
T−1, ..., U

′
0 values can

be defined in this order.

• As E(Ut+1|Xt) is Xt measureable, there is such an ft(x) that is Borel measureable and satisfies
ft(Xt) = E(Ut+1|Xt), now let ut be:

ut :=

{
zT if t = T

max{zt, ft} else

Therefore Ut = ut(Xt).

• Let τt := min{k ≥ t | Uk = Zk}.

The values τt (t = 0, ..., T) are stopping times. From Ut one can see that for all t there is a
k, for which the equality stands - this is precisely the time, when the payoff is expected to be at
most the same as later. So if we get to time t, then it is worth to stop at τt.

τt can be formalized like this:

τt :=

{
T if t = T

t · 1{Zt ≥ E(Zτt+1 |Xt)}+ τt+1 · 1{Zt < E(Zτt+1 |Xt)} else

• The task is not only to estimate the stopping time, but also the available profit. So the goal of
the task is to calculate the pair (U0, τ0), which can be done by estimating ut functions.

2

2. Least Squares Monte Carlo algorithm (LSM)
The idea of the algorithm is on one hand to calculate Ut, τt values based on their previous definitions as
the solution of a dynamic programming. We can do this by taking N independent sample simulations
from (Xt):

(X
(1)
t)Tt=0, ..., (X

(N)
t)Tt=0

The values Z(i)
t = zt(X

(i)
t) are the corresponding payoffs, and based on the sample, we will calculate

in order t = T, ..., 0.

Let {et,k}mk=1 be a set of linearly independent "basis functions" from L2(E) for all t. For short et
will denote the m dimensional vector: et(·) :=

(
et,1(·), ..., et,m(·)

)
. These et values (t = 0, ..., T) will

be called the approximation scheme.

Notation: if a ∈ Rm, then a · et := a1 · et,1 + ...+ am · et,m

So now we want to estimate E(Ut+1|Xt) in this {et,k}mk=1 basis, with αt · et(Xt). Let us take the
closest by L2 norm:

αt = argmin
a

E
(
(Ut+1 − a · et(Xt))

2
)

Theorem 2.1.: Given {et,k}mk=1 (t = 0, ..., T) approximation scheme, let A m×m be the covariance
matrix where

(
At

)
i,j

= E
(
et,i(Xt)et,j(Xt)

)
and bt = E

(
Ut+1et(Xt)

)
. Then αt ≈ A−1

t · bt.

Proof:

E
(
Ut+1

)
≈ E

(
αt · et(Xt)

)
= E

(
αt,1 · et,1(Xt) + ...+ αt,m · et,m(Xt)

)
E
(
Ut+1

)
≈ E

(
αt,1 · et,1(Xt)

)
+ ...+ E

(
αt,m · et,m(Xt)

)
Therefore

bt = E
(
Ut+1

)
E
(
et(Xt)

)
≈ E

(
αt,1 · et,1(Xt)

)
E
(
et(Xt)

)
+ ...+ E

(
αt,m · et,m(Xt)

)
E
(
et(Xt)

)
=

E
(
αt,1 · et,1(Xt)

)
E
(
et,1(Xt) + ...+ et,m(Xt)

)
+ ...+ E

(
αt,m · et,m(Xt)

)
E
(
et,1(Xt) + ...+ et,m(Xt)

)
=

αt1E
(
et,1(Xt)

m∑
k=1

et,1(Xt)
)
+ ...+ αtmE

(
et,m(Xt)

m∑
k=1

et,1(Xt)
)
= αt ·At

During the algorithm we will estimate certain values based on our sample, so for example when
we calculate At then instead of E

(
et,j(Xt)et,k(Xt)

)
we calculate the mean given by the samples:

1
N

N∑
i=1

(
et,j(X

(i)
t)et,k(X

(i)
t)

)
. In such case instead of At we use the notation Ãt (and also we will denote

similarly the other values when we estimate by the sample).

3

Classical algoritm:

1. Take sample simulations: (X
(i)
t)Tt=0 i = 1, ..., N

2. Calculate values Z(i)
t and et,k(X

(i)
t) for all t = 0, ..., T ; i = 1, ..., N ; k = 1, ...,m

3. Specify Ãt for each t = 0, ..., T and calculate their inverses as well.

4. ũT = zT ∀ i = 1, ..., N

FOR t = (T − 1), ..., 0:

α̃t = Ã−1
t

1
N

N∑
i=1

ũt+1(X
(i)
t+1) · et(X

(i)
t)

ũt := max{zt, α̃t · et}

5. RETURN

Ũ0 =
1

N

N∑
i=1

ũ0(X
(i)
0)

3. Expected value estimation
Let y be a discrete real random variable, we want to estimate the expected value µ = E(y) by µ̂, that
satisfies for given 0 < ϵ, δ < 1:

P
(
|µ̂− µ| > ϵ

)
≤ δ

Now we can take N samples according to the distribution of X and let µ̂ be their mean (as we did in
the LSM too). Then from Chebyshev’s inequality we get:

P
(
|µ̂− µ| > ϵ

)
≤ σ2

Nϵ2

So for constant δ one need to take N = O(σ2/ϵ2) samples (and in the classical setup there is no
algorithm using less samples [4]).

In contrast in the quantum setup quadratic acceleration can be achieved, meaning there is a qu-
antum algorithm using O(σ/ϵ) samples that satisfies the same requirement.

When article [1] was written only Õ(σ/ϵ) was known, the result of A. Montanaro ([3]) is that there
is a quantum algorithm which uses O(σ/ϵ · log(1/δ) · log3/2(σ/ϵ) · loglog(σ/ϵ)) samples. However in
their last year’s article, R. Kothari and R. O’Donnell ([2]) got rid of the logarithmic factors and have
shown, that O(σ/ϵ) sample is enough. About this I am writing in section 6., before that let us take a
look at the quantum LSM.

4

4. Quantum LSM
In the quantum LSM we use the expected value estimation as a subrutin to estimate certain values, de-
pending on (Xt). Denote with N̂ the required number of samples in the quantum case, so N̂ = O(σ/ϵ).

The quantum LSM starts by creating a sample generator oracle P, for which

P|0⟩ =
∑√

p(x)|x⟩ , where p(x) = P(X1 = x1)P(X2 = x2|X1 = x1)...P(XT = xT |XT−1 = xT−1)

So P gives a superposition of the possible realizations of the Markov chain, which if measured, results
in sampling according to the distribution.

The algorithm:

1. Estimate et,k(Xt)et,l(Xt) values by N̂ queries (i.e. with N̂ number of P calls)

2. By this specify all Ãt, and their inverses too classically

3. ũT := zT

4. FOR t = (T − 1), ..., 0:

Estimate ũt+1 · et,k(Xt) values and by them specify b̃t (here also with N̂ calls)

α̃t = Ã−1
t · b̃t

ũt := max{zt, α̃t · et}

5. RETURN Ũ0 = ũ0(X0)

5. Comparing runtimes
Now in classic case we had N samples, let us denote the time it requires by N ·Tsamp, then calculating
Z

(i)
t and et,k(X

(i)
t) takes O(N · T ·m2) time. The inverse of Ãt can be calculated in O(T ·mω), finally

the calculation of α̃t values in O(T ·m2). Therefore the runtime is:

O(N · Tsamp +N · T ·m2 + T ·mω)

While in quantum case if Tqsamp is the required time for sampling, then all et,k(Xt)et,l(Xt) (hence
calculating all Ãt) takes O(N̂ · Tqsamp · T · m2) time. The inverse of Ãt can be calculated again in
O(T ·mω) the same way. Estimating b̃t is O(N̂ · Tqsamp · T ·m). Therefore the runtime is:

O(N̂ · Tqsamp · T ·m2 + T ·mω)

5

Remark: The more detailed runtime analysis that can be found in [1] uses Montanaro’s result, so
there are additional polylogarithmic factors in their theorems. Also now I examined the runtime under
slightly milder conditions as the authors, for example I did not take into account how long it would
take to create/invoke the necessary quantum gates.

In any case, it can be seen from this that the quantum LSM achieves an almost quadratic accele-
ration compared to the classical one. We can assume that typically N , and respectively N̂ are the
determining terms (because we want ϵ to be small). But it can also be seen that if T is big, we might
not accelerate that much.

6. Quantum acceleration for the expected value estimation
Now I would like to summarize the result of R. Kothari and R. O’Donnell. They have shown that the
estimation defined in section 3. can be achieved with a quantum algorithm that uses O(σ/ϵ) samples.
The algorithm they gave for it is basically a quantum phase estimation, which uses a specific controlled
gate U (which is similar to the one used in Grover’s search).

So let y be a real discrete random variable, we want to estimate µ = E(y).

Theorem 6.1.: There exists such a quantum algorithm that uses O(n) samples and outputs µ̂ for
which:

P
(
|µ̂− µ| ≥ σ

n

)
≤ 1

3

Remark: Then indeed if n = O(σ/ϵ), we get

P
(
|µ̂− µ| ≥ ϵ

)
≤ 1

3

and by O(log(1/δ)) repetitions (then taking the median) any 0 < δ ≤ 1/3 can be achieved on the right
side.

Theorem 6.2.: Given ϵ > 0 suppose that E(y2) ≤ 1, then there exists a quantum algorithm, that
uses O(1/ϵ) samples and with probability 2/3 distinguishes a) |µ| ≤ ϵ/2, and b) ϵ ≤ |µ| ≤ 2ϵ.

There is a reduction between the two theorems, if 6.2. stands, then 6.1 is also true. (For this a
binary search an the loglog trick can be applied: [2] 4.1. section.)

If y is a discrete random variable on [D] state space, then let P be a gate, where

P|0⟩ =
D∑
ℓ=1

√
p(ℓ) · |ℓ⟩|garbageℓ⟩

6

Let αℓ := −2 arctan(yℓ) and let U := REFLp ·ROTy, where

REFLp := P(2|0⟩⟨0| − I)P† and ROTy such as ROTy|ℓ⟩|garbageℓ⟩ = eiαℓ |ℓ⟩|garbageℓ⟩

Notation 6.3.: If
D∑

j=1

eiθj |uj⟩⟨uj | is an eigendecomposition of U and |σ⟩ is a unitvector, then in

this basis |σ⟩ =
D∑

j=1

σ̂j |uj⟩, where σ̂j = ⟨uj |σ⟩. As |σ⟩ is a unitvector, |σ̂1|2, |σ̂2|2, ..., |σ̂D|2 determines

a probability distribution.

In this case θ ∼ ΘU(|σ⟩) will denote that j ∈ [D] index is chosen according to the distribution
induced by |σ⟩ and we choose θj from the eigendecomposition of U (so θ := θj).

Notation 6.4.: If z1, ..., zD are complex numbers, then ([D], p) determines a complex z random
variable, because at first we can choose an ℓ index according to p, then the appropriate zℓ will be the

value of the variable. Then denote |z⟩ :=
D∑
ℓ=1

zℓ
√
p(ℓ)|ℓ⟩.

If 1 is the all 1 (∀ℓ : zℓ = 1) random variable, then |1⟩ = P|0⟩.

Theorem 6.5.: Denote with s2 := E(y2) and suppose that s ≤ 1/16. If θ ∼ ΘU(|1⟩), then:

P(4/5 · 2|µ| ≤ |θ| ≤ 5/4 · 2|µ|) ≥ 1− 2/9

Lemma 6.6.: If θ ∼ ΘU(|1⟩), then E
(
sin(θ/2)−2

)
= (1 + s2)/µ2.

Lemma 6.7.: Let |1+iy⟩ :=
D∑
ℓ=1

(1 + iyℓ)
√
p(ℓ)|ℓ⟩, the normalized vector is |1+iy⟩/

√
1 + s2. If

θ̃ ∼ ΘU(|1+iy⟩/
√
1 + s2), then E

(
sin(θ/2)2

)
= µ2/(1 + s2).

Lemma 6.8.:
∣∣⟨1|1+iy⟩

∣∣2 ≥ (1 + µ2)/(1 + s2) ≥ 1/(1 + s2)

Proof (Theorem 6.5): The proof is provided with worse constants, but these can be refined to
those that are in the theorem statement ([2] 3.5. section). Suppose that s ≤ 1/1000

P(5/100 · 2|µ| ≤ |θ| ≤ 50 · 2|µ|) ≥ 1− 5/1000

Applying Markov inequality for lemma 6.6., we get that

P
(
sin(θ/2)−2 ≥ 350 · 1 + s2

µ2

)
≤ 1/350 < 3/1000

7

Meaning with greater probability than 3/1000:

(sin(θ/2)−2 ≤ 350 · 1 + s2

µ2
<

400

µ2

As (|µ|
20

)2

≤ (sin(θ/2)2 ≤ (θ/2)2 ⇒ 2/20 · |µ| ≤ |θ|

it means

P(|θ| < 5/100 · 2|µ|) < 3/1000 (1)

On the other hand applying Markov for lemma 6.7 and θ̃ ∼ ΘU(|1+iy⟩/
√
1 + s2):

P
(
sin(θ̃/2)2 ≥ 1000 · µ2

1 + s2
)
≤ 1/1000

Meaning with greater probability than 1/1000:

(sin(θ̃/2)2 ≤ 1000 · µ2

1 + s2
< 1000 · µ2

As

|sin(θ̃/2)| ≤
√
1000|µ| ⇒ |θ̃/2| ≤ π/2

√
1000|µ| < 50 · 2|µ|

it means

P(|θ̃| > 50 · 2|µ|) ≤ 1/1000

And by lemma 6.8.:

P(|θ| > 50 · 2|µ|) ≤ (1 + s2)/1000 < 2/1000 (2)

So from inequalities (1) and (2):

P(5/100 · 2|µ| > |θ|) + P(|θ| > 50 · 2|µ|) ≤ 3/1000 + 2/1000 = 5/1000

Quantum phase estimation: Given a gate U and a |ψ⟩ eigenstate, meaning U|ψ⟩ = λ|ψ⟩, and
λ = e2πi·0,φ1...φn... (φi is the ith decimal point). Now if we want to estimate λ up to nth decimal, then
the following quantum algorithm is called quantum phase estimation:

1. Starting from |0⟩n|ψ⟩ qubits, we apply Hadamard gates on the first n register, so

|0⟩n|ψ⟩ → 1√
2n

∑
|j⟩|ψ⟩

8

2. Then we call n controlled-U gate, where the control qubits are the n, n− 1, ..., 1 register in order
and the target is always the last register. Now:

1√
2n

∑
|j⟩|ψ⟩ → 1√

2n

∑
|j⟩Uj |ψ⟩ = 1√

2n

∑
e2πi

φ1...φn
2n j |j⟩|ψ⟩

3. Finally we apply the QFT−1
N gate, where N = 2n and QFTN is the quantum Fourier transfor-

mation, from which we get:

1√
2n

∑
e2πi

φ1...φn
2n j |j⟩|ψ⟩ → |φ1...φn⟩|ψ⟩

4. Measuring the first n qubits, we get the desired estimate.

Proof (6.2. Theorem): In the end we prove the main theorem, using theorem 6.5. Recall we want
a O(1/ϵ) runtime quantum algorithm, which distinguishes with at most 1/3 error between |µ| ≤ ϵ/2,
and |µ| ≥ ϵ. If ϵ > 0 is given and s ≤ 1/16, then let us examine the algorithm:

1. Do a quantum phase estimation on the start state P|0⟩ where the controlled gates are the
previously defined U = REFLp · ROTy, let θ′ be the output. Let the accuracy of the phase
estimation be such as for the estimated θ, it holds that P(|θ − θ′| > ϵ/6) ≤ 1/9. This accuracy
can be achieved by O(1/ϵ) controlled-U gates.

2. If |θ′| > 142/100 · ϵ, then RETURN(|µ| ≤ ϵ/2), else RETURN(|µ| ≥ ϵ).

This algorithm runs in O(1/ϵ) time and we are about to see that indeed at least with probability 2/3
it distinguishes well by the input ϵ, as we want it in theorem 6.2.. The only additional requirement
here is that we want s ≤ 1/16, whereas in theorem 6.2. only s ≤ 1 is required, but we can realize that
if y (and also ϵ) is multiplied with 0 < c < 1 constant (now with 1/16), then it only affects the runtime
by a constant factor.

Now we only need to see that, from theorem 6.5.:

P(4/5 · 2|µ| ≤ |θ| ≤ 5/4 · 2|µ|) ≥ 1− 2/9

As the accuracy is ϵ/6 for the estimation of θ′ with at most 1/9 error, the overall error is at most
1/9 + 2/9 = 1/3 for the following:

4/5 · |µ| − ϵ/12 ≤ |θ′/2| ≤ 5/4 · |µ|+ ϵ/12

If |µ| ≤ ϵ/2, then

|θ′/2| ≤ 5/8 · ϵ+ ϵ/12 < 71/100 · ϵ

And if |µ| ≥ ϵ, then

|θ′/2| ≥ 4/5 · ϵ− ϵ/12 > 71/100 · ϵ

9

References
[1] Quantum algorithm for stochastic optimal stopping problems with applications in finance - J. F.
Doriguello, A. Luongo, J. Bao, P. Rebentrost, M. Santha (2021): https://arxiv.org/abs/2111.15332

[2] Mean estimation when you have the source code; or, quantum Monte Carlo methods - R. Kot-
hari, R. O’Donnell (2022) https://arxiv.org/abs/2208.07544

[3] Quantum speedup of Monte Carlo methods - A. Montanaro (2017) https://arxiv.org/abs/1504.06987

[4] An Optimal Algorithm for Monte Carlo Estimation - P. Dagum, R. Karp, M. Luby, S. Ross (1995)
https://ieeexplore.ieee.org/document/492471

10

https://arxiv.org/abs/2111.15332
https://arxiv.org/abs/2208.07544
https://arxiv.org/abs/1504.06987
https://ieeexplore.ieee.org/document/492471

	American Option Problem
	Least Squares Monte Carlo algorithm (LSM)
	Expected value estimation
	Quantum LSM
	Comparing runtimes
	Quantum acceleration for the expected value estimation

