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1 Introduction

This semester, I continued my work regarding the modelling and optimisation
of optical systems, perfecting and expanding the C++ code I have created over
the last two semesters. I added a lot of new features – many of which are
centred around the new Material class – and used the thus improved code to
design an optimised achromatic lens. Furthermore, I optimised the parameters
of an old Tessar objective, using materials that are available today - as opposed
to the ones that were originally used for this model. This optimisation is not
yet finished, I plan to complete the process in my thesis.

2 The structure of the C++ project

First, I would like to give a brief outline of the structure of the expanded C++
project I created. It includes a .cc file with the main() function, while classes,
structs and their member functions are contained in the following five header
files: euclidean.h, errors.h, material.h, surface.h and objective.h. The project
is made for modelling optical systems that contain flat and spherical surfaces,
simulating light rays passing through them, analysing optical aberrations, and
visualisation, for which purpose I used the Cairo graphic library. The program’s
ability to handle light rays of different wavelengths and calculate the refractive
index of a lens based on wavelength is a significant improvement. The program
can be used to optimise the parameters of optical systems with the help of
repeated simulations.

2.1 euclidean.h

This section of the code is designed to simulate the three-dimensional Euclidean
space, using two structs: Vec3 and Ray. The former is a straightforward model
of a vector from the Euclidean space with corresponding operations, while the
latter – a representation of a ray of light – has been given a third parameter
in addition to the two already existing ones: it can now be defined with a base
(its starting point in space), a direction and a wavelength.

2.2 material.h

The addition of the struct Material is a significant improvement to my project.
It not only enables us to specify the material of a lens by name, but also allows
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us to simulate light rays of different wavelengths. This feature is crucial in
considering chromatic aberrations during the optimisation process. Chromatic
aberrations occur when different wavelengths are not focused to the same point,
which can happen because the refractive index of an optical medium – an
indication of its light-bending ability – may vary with the wavelength of the
light. This means that it is insufficient to define a lens using only one number
as its refractive index since this number depends on the parameters of the light
ray passing through it.

The refractive index of a material can be calculated, given the wavelength
of the ray, using – for example – Sellmeier’s dispersion formula [3]:

n2 − 1 = C1 +

8∑
i=1

C2iλ
2

λ2 − C2i+1
,

where the coefficients Ci (i = 1, ..., 17) are specific to the material. For the
program to calculate the refractive index, it requires access to these parameters
for each material used. Fortunately, an online database exists [3] that contains
this information for most types of glass that are currently in use, however, it
also contains pages of information that are not relevant to our case, making
it complicated to navigate. As a solution, I wrote a Python script using the
BeautifulSoup class from the bs4 module, which made it possible to parse the
whole database and extract only the data needed, namely the type of the used
dispersion formula, the 17 coefficients and the Abbe number (an approximate
measure of the material’s dispersion) for each glass type. This data is collected
in a JSON file, which is read by the program once and then stored as a static
data member of the Material class.

An instance of the class Material can be created with one parameter: the
name of the glass (e.g. ”N-SF14”). The two member functions of this class are
the following:

• The constant member function ri determines the refractive index of the
material given the wavelength of the light ray (587.6 nm by default).

• The function guessMaterial takes two arguments: a refractive index value
at 587.6 nm and an Abbe-number. Given these two parameters, the func-
tion identifies a similar known material (within a difference of 0.01 for the
refractive index and 0.5 for the Abbe number). This function is useful
because, when analyzing existing objectives, we often need to identify
a glass type knowing only these two parameters. The situation can be
complicated even further when the glass used in those objectives is no
longer in production, which creates the need to identify similar materials
that can be used as a replacement.

2.3 surface.h

The surface.h header file contains the Surface class used for modelling optical
surfaces, alongside its two derived classes: FlatSurface and SphericalSurface.
An instance of the FlatSurface class can be defined by a normal vector, the
centre of the surface, its size (in millimetres), the material on the entry side of
the medium and the material on its exit side, whereas the constructor of the
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SphericalSurface class requires the centre of the sphere, its radius, the direction
of the surface from the centre of the sphere, the angle of aperture, and finally,
similarly to the flat surfaces, the material on its entry and exit sides.

For both surface types, the program is able to calculate the intersection
point with a light ray, and the path of a ray after it passes through the surface.

2.4 objective.h

All the features mentioned above come together in the class called Obj (short
for objective). An instance of this class is in fact nothing more than instances
of the two surface classes stacked after one another, positioned perpendicular
to the x-axis. Two important new additions to this class are the following
member functions:

• the function focus calculates the focal point of the objective, taking the
wavelength of the passing light ray as an argument (since, as a conse-
quence of chromatic aberration, the focus will be different based on the
wavelength),

• the function focalLength returns the focal length (that is, the distance
from the focal point to the front principal plane) of the objective for a
given wavelength.

The function drawPaths has been updated so that it is now suitable for visu-
alising different coloured light rays passing through an optical system. It does
this with the help of the Cairo graphics library.

Figure 1: Light rays of different wavelengths passing through a Tessar objective

Figure 2: Light rays passing through a Biotar objective
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3 Designing an achromat

3.1 Optical aberrations

When designing an optical system, we must consider the inaccuracies that arise
due to the fact that the paraxial theory – where light rays from any given point
of an object would pass through the lens and come together at a single point
in the image plane – is not a completely accurate model, and real lenses do
not focus light into a single point. These inaccuracies in imaging are known as
optical aberrations, and they are categorised into two types:

• monochromatic aberrations and

• chromatic aberrations.

Monochromatic aberrations occur due to the geometric properties of the sur-
faces in the optical system, and they also appear when using monochromatic
light. The most common monochromatic aberrations are spherical aberration,
coma, astigmatism, field curvature and image distortion.

Last year, I used my C++ program to visualise and analyse some of these
aberrations in a Tessar-, a Biotar- and a Biogon-type objective.

Chromatic aberrations, on the other hand, do not appear when monochro-
matic light is used. They are caused by dispersion, the variation of a glass’s
refractive index with wavelength. Due to dispersion, light rays of different
wavelengths are not focused to the same point, which causes the image of a
point to spread out.

Figure 3: Chromatic aberration in a single equiconvex lens

This phenomenon can be observed in Figure 3, where I simulated some
light rays of different wavelengths passing through an equiconvex lens made of
the material K7 (a type of crown glass). The difference in the focal points of
different coloured rays is clearly visible.

3.2 What is an achromatic lens?

An achromatic lens or achromat is designed to reduce the effect of chromatic
aberration. The goal is for the difference between the focal points of two
selected wavelengths (usually a shade of red and blue) to be as small as possible
[1]. Typically, an achromatic lens consists of two elements: an equiconvex part
made out of a type of crown glass, and a concave part made out of flint glass.
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Figure 4: Chromatic aberration in an achromatic lens

3.3 Optimising the parameters of an achromat

When designing an achromat, my goal was to reduce the difference between
the focal point of the wavelengths 486.1 nm and 656.3 nm, with the following
constraints:

• The achromat should consist of two elements: an equiconvex lens made
of K7, and a lens made of F2 (a type of flint glass) with a planar surface.

• The first lens should be 5mm thick, the second 1mm.

• The focal length of the achromat should be 100mm.

Since the focal lengths and focal points of an optical system can be calculated
using paraxial approximation, this optimisation problem could be solved ana-
lytically, without the need for simulation. My reason for choosing the latter
option was, however, that I wanted my method to work for more complicated
optical systems and more complex optimisation problems as well.

Figure 5: Achromatic doublet

My task was to determine the radii r1 and r2 (as shown in Figure 5) so
that the focal length is 100mm and the aforementioned focal points are as
close to each other as possible, with the other three parameters set to r3 = ∞,
d1 = 5 and d2 = 1. (A radius of ∞ means that the surface is flat, while a
positive radius indicates a spherical surface whose centre lies on its exit side.
On the other hand, if the radius is negative, it means that the centre of the
sphere is located on the entry side of the surface.) In order to do this, I first
wrote a function (find r1 ) that calculated the value of r1 from any given r2 so
that the focal length of the lens at 656.3 nm remained 100mm. This function
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Figure 6: The difference between the focuses as a function of r1 and r2

implements binary search to find the value of r1 (between 1 and 100mm) that
results in a focal length within 0.0001mm of the desired length. Binary search
finds the optimal r1, because, as seen in Figure 7, if all other parameters are
set, then the difference between 100mm and the focal length of the lens is a
quasiconvex function of r1. In Figure 7, the x-axis displays the values of r1,
while the y-axis shows the amount by which the focal length deviates from
100mm. r2 has been set to −22. We can observe that the optimal value of r1
for r2 = −22 is around 35mm.

Figure 7: The amount by which the focal length deviates from 100, as a function
of r1, where r2 = −22.

To proceed further, we needed to find a value for r2 that would minimise
the difference between the focal points of the two chosen wavelengths. Note
that the value of r1 is dependent on the value of r2, as the focal length at
656.3 nm should always be equal to 100. We can determine the suitable value
for r1 with the help of the function find r1.

Once again, we were dealing with a quasiconvex function as shown in Figure
8. To get this figure, I plugged in values for r2 from −100 to −10, used the
function find r1 to determine r1 for which the focal length is 100, and then
calculated the distance between the focal points of the selected wavelengths.
We can note that the optimum is around r2 = −38. To get a precise result, I
implemented a type of line search called the Golden Section Method [4].

3.4 The Golden Section Method

In nonlinear optimisation, we often rely on calculating derivatives. However, in
this case, our target function is not defined analytically, which makes us unable
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Figure 8: The target function as a function of r2

to use any method based on derivatives. Luckily, the assumption of strict
quasiconvexity allows us to find the optimum using the Golden Section Method,
which is an effective way of finding the minimum of a strictly quasiconvex
univariate function.

To understand the fundamentals of this algorithm, we need to define the
concept of an interval of uncertainty. An interval [a, b] is called the interval
of uncertainty if a minimum point of our function lies in [a, b], though its ex-
act value is not known. The search procedure relies on the principle that by
evaluating a strictly quasiconvex function at two points inside the uncertainty
interval, we can exclude portions of the interval that do not contain the mini-
mum and so the interval of uncertainty can be reduced.

Consider, for instance, the line search problem to minimize f(x) subject to
a ≤ x ≤ b, so the initial period of uncertainty in [a, b]. Let λ, µ ∈ [a, b] such
that λ < µ. If f(λ) > f(µ), then the minimum lies in [λ, b]. If f(λ) < f(µ),
then the minimum lies in [a, µ]. This means that we can reduce the interval of
uncertainty by evaluating the function at two points. Different methods exist
for selecting these two points, the Golden Section Method being one of the
most efficient. For this method, the value of the reduction ratio:

Length of interval of uncertainty after v observations are taken

Length of interval of uncertainty before taking the observations

is equal to (0.618)v−1.

3.5 The result

The implementation of the Golden Section Method yielded the following values
for the two radii:

• r1 = 40.0526mm,

• r2 = −37.968mm.

The optimised achromat resulted in a significant improvement, with a differ-
ence of 1.55 · 10−7 between the focal lengths for the two selected wavelengths,
compared to the initial value of approximately 0.667.
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4 Analysis and redesign of a Tessar objective

After completing the optimisation of the achromat, I began working with the
same Tessar objective whose properties I analysed and visualised last year. The
information available to me regarding this objective includes the radii of the
7 surfaces in the objective, the distance between them, the refractive index of
each material used (at 587.6 nm) as well as the Abbe-numbers of the materials.

The design of this objective was created in the last century, and despite
having its parameters, we would be unable to build it today. The reason for
this is that the glasses used in its lenses are no longer in production. Therefore,
my first goal was to find materials that resemble the ones used in the design.
With the help of the previously mentioned function guessMaterial, I managed to
locate materials with refractive indexes within 0.01 and Abbe-numbers within
0.5 of the original glasses.

My next goal is to change some parameters of the objective in order to
correct some optical aberrations in its imaging while setting its focal length to
100mm. This optimization is partially a task for the future – I will complete the
process and configure the parameters to correct the aberrations in my thesis.
I have 13 parameters to optimise: the radii of the 7 surfaces and the distances
between them. To achieve a focal length of 100mm, I wrote a function similar
to the one called find r1 that I used for designing the achromat. This new
function (find r7 tessar) also utilises binary search to determine the radius of
the last surface in the Tessar objective for any given combination of the other
12 parameters, so that the focal length is 100mm.

I analysed the objective according to the following aspects:

• axial chromatic aberration,

• spherical aberration and

• field curvature.

In terms of reducing the effect of axial chromatic aberration, I aim to minimise
the difference between the focal points of the two wavelengths 486.1 nm and
656.3 nm, similarly to the case of the achromat.

Spherical aberration occurs when light rays parallel to the x-axis are not
focused to one point after passing through an optical system. To measure this,
I simulated such rays passing through the objective and measured the biggest
difference between their intersections with the x-axis. My target is to reduce
this difference.

Field curvature or Petzval field curvature (named after Hungarian mathe-
matician, inventor and physicist Joseph Petzval) is the optical aberration where
the image of a flat object perpendicular to the x-axis is not focused on a flat
image plane, instead, the image is curved. It can both be examined analyti-
cally and through simulation. I chose the former option: with the help of the
so-called Petzval sum, we can calculate the curvature of the curved image field
based on the radii and the refractive indices of the lenses in the optical system
[2].

The Petzval sum of an objective is∑
i

ni+1 − ni

rini+1ni
, (1)
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where ri is the radius of the i-th surface and the n-s are the indices of refraction
on both sides of the surface.

After modelling the Tessar objective with the help of my program, using
the materials I found to be similar to the originals, I calculated the amount of
the above optical aberrations, with the following results:

• the difference between the focus of the two wavelengths was 0.01mm,

• the amount of spherical aberration was 0.397mm

• and for the Petzval sum, I obtained a value of 0.00317.

These values are quite good, so to test my optimising algorithm, I changed
the materials in the objective to ones that are less similar to the original glasses.
For this changed – and not yet optimised – optical system, the values turned
out to be as follows:

• the difference between the focus of the two wavelengths was 1.89mm,

• the amount of spherical aberration was 0.59mm

• and the Petzval sum was 0.0017.

My current goal is to find values for the 12 parameters for which these values
are as small as possible. To do this, I defined a target function, which is equal
to a linear combination of these three values. I chose the coefficients so that the
order of magnitude is approximately the same for all three. To sum up, I have to
solve a nonlinear optimisation problem in the 12 dimensional Euclidean space,
where my target function is not given analytically - it is a so-called ”black-box
function”.

As I mentioned, this optimisation is partly a task for the future. However,
I would like to give a brief outline of how I proceeded so far. Since the objec-
tive function cannot be calculated analytically, I opted for a multi-dimensional
search method that does not use derivatives. First, I defined a starting point
(p0) and calculated the objective function at that point. Then, I implemented
a line search along all 12 coordinate axes. This means that the program cal-
culates the target value at 100 points along each axis, starting from p0 and
stopping at a distance of δ (for which I have tried different values) from p0,
thus staying inside a 12 dimensional brick. (It is a brick and not a cube since I
used different δ values for the parameters representing the radii of the surfaces,
and those representing the distances between them.) After that, it calculates
the objective value at each vertex of this brick and chooses the next point (p1)
so that its objective value is the smallest of all the examined points. It then
continues to search along the coordinate axes inside the same brick (now start-
ing from p1), until the improvement of the objective function stops or slows
down to the extent that it only decreases by a small ε between two rounds.
Then, as a next step, a new brick can be defined around the current optimal
solution, and the process can be repeated.

So far, I managed to find a solution for which

• the difference between the focus of the two wavelengths is 0.65mm,

• the amount of spherical aberration is 0.3mm
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• and the Petzval sum is 0.0014.

Even though the values improved, I will still need to work on the algorithm to
get better results.

5 Summary

My program can be used to model, visualise and analyse optical systems, and
with its help, we can also optimise the parameters of simpler optical systems
(e.g. an achromatic doublet), but in order to use it for more complicated
optimisation problems, a faster and more efficient algorithm needs to be im-
plemented. My plan for the next semester is to implement such an algorithm
as well as to familiarise myself with the full consequences of the wave nature of
light so I can better understand the geometry used in the modelling procedure.
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