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1 Introduction

Diffusion Models were first proposed by Sohl-Dickstein et al. [17] in 2015, inspired by non-
equilibrium statistical physics. They are a type of generative model that has been used in
several popular deep-learning models, such as DALL-E 2 [13], Stable Diffusion [14], Google
Imagen [16] and GLIDE [11], not only because of their ability to produce diverse and high-
quality samples, but also because of their flexibility and tractability. The primary purpose of
diffusion models is to map training data to a latent space using a Markov chain. This process
gradually adds noise to the data, resulting in an asymptotically transformed image, that is
Gaussian distributed in nature. The ultimate goal of this method is to learn its reverse, which
enables us to generate new data by producing a Gaussian image and traversing the reverse
process. Diffusion models have a wide range of applications, including text simplification,
question generation, text-to-image generation, paraphrasing, and more. The purpose of this
project is to apply diffusion models to computer vision tasks, namely image segmentation.

In the previous semester, I studied the theoretical foundations of Diffusion Models and
their applications in Image Synthesis and Image Segmentation. I looked at the repositories
belonging to the papers presented in last semester’s summary and studied the way they were
implemented. I trained the models on the same dataset to compare them and to experiment
with different sampling methods.

My main goal this semester was to create an environment in which I could train and test
diffusion models. To achieve this I had to extend the already existing experiment pipeline used
by the Computer Vision Group. I used and modified open-source implementations, as well
as wrote code to achieve a flexible training environment. Since Diffusion Models are a kind
of generative model, injecting it into the experimental pipeline, which was not made to test
generative models, was a complex task. First I had to study the architecture of the pipeline
and the existing implementations of diffusion models, and then I had to come up with a way
to make them compatible. Finally, I made modifications that made training and modifying
models easier. For the remaining part of the semester, I have spent running experiments for
unconditional image synthesis and image segmentation, both on the COVID-QU[2] dataset.
This came with a new set of challenges, like finding the optimal model, architecture, and
hyperparameters.

2 Theoretical foundations

Diffusion Models are a type of latent variable model, which maps our dataset to a latent space
and back. This mapping to the latent space is done by gradually adding Gaussian noise to
our original data, finally obtaining a pure Gaussian image. Our goal is to learn to reverse this
process, this way we can generate images first by sampling from the latent space and passing
it through the estimate of the reverse process, obtaining a new image.
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Figure 1: The diffusion process [7]

Specifically, the noising process is a Markov chain, which evolves according to:

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI). (1)

Where N (x;m,σ) is the probability density function of the m mean σ variance normally dis-
tributed variable, x0 is our original sample, x1, . . . , xT are our latents, and β1, . . . , βT is a vari-
ance schedule. Under good settings of of T and β1, . . . , βT , q(xT ) is nearly Gaussian. Sampling
at a given t can be simplified by writing:

q(xt|x0) = N (xt;
√
αtx0, (1− αt)I), (2)

αt = 1− βt, αt =
t∏

s=1

αt. (3)

Using Bayes’ theorem we can prove that the, q(xt−1|xt, x0) posteriors are also Gaussian [6]:

q(xt−1|xt, x0) = N (xt−1, µ̃(xt−1, x0), β̃tI), (4)

with a mean that depends on the data. This means that the reverse transitions depend on the
whole data distribution, and we have to estimate them for the sampling process. So to sample
from q(x0), first we would have to sample from q(xT ) and then sample from the estimated
reverse steps until we reach x0. By choosing T and a variance schedule such that q(xT ) is
nearly Gaussian, sampling from this distribution is trivial.

Let our model that estimates the reverse transitions pθ(xt−1|xt) be of the following form:

pθ(xt−1|xt) = N (xt;µθ(xt−1, t),Σθ(xt−1, t)), (5)

where µθ(xt−1, t) and Σθ(xt−1, t) are some kind of neural networks. The goal of training is to
find such weights for these neural networks, which maximize the log-likelihood of our training
data.

While Sohl-Dickstein et al. [17] proposed Diffusion Models in 2015, it wasn’t until 2020 that
Ho et al. [7] could produce high-quality samples, while achieving state-of-the-art sample quality
results. The main contribution of their paper is the improved loss function. First, they assume,
that Σθ(xt−1, t) = σtI, where σt = βt. Then they reparametrize µθ(xt−1, x0) with εθ(xt, t), a
noise predictor. In this setting the loss, that is in the original paper of Sohl-Dickstein et al. [17]
is the variational upper bound of the log-likelihood, becomes

Ex0,ε

[
β2
t

2σ2
tαt(1− αt)

||ε− εθ(
√
αtx0 +

√
1− αtε, t)||2

]
. (6)

Now their neural network only needs to approximate the noise at each diffusion step. The
actual loss function that they use in the paper is

Lsimple(θ) = Ex0,ε,t

[
||ε− εθ(

√
αtx0 +

√
1− αtε, t)||2

]
. (7)
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This is a reweighed version of the previous loss, and they observed, that it works better in
practice than simply using the variational upper bound.

2.1 Alternative formulations of Diffusion Models

In addition to the Denoising Diffusion Probabilistic Models presented in the previous section,
there are multiple alternative frameworks of diffusion models, which might be worth mentioning.

Noise Conditioned Score Networks [19] are one of these frameworks, they aim to estimate
the gradient of the data density. Formally, σ1 < σ2 < . . . < σT is a sequence of Gaussian noise
scales, pσ1(x) ∼ p(x0), pσ1(x) ∼ N (0, I), and pσt(xt|x) ∼ N (xt;x, σtI). Their aim is to estimate

∇xtpσt(xt), we know that ∇xtpσt(xt|x) =
xt − x

σt

, so they minimize the following loss function,

where sθ(xt, σt) is a neural network.

1

T

T∑
t=1

λ(σT )Ep(x)Ext∼pσt (xt|x)||s(xt, σt)−
xt − x

σt

||

The estimated gradient is then used to iteratively denoise a sample from N (0, I), given the
timestep. Namely, the sampling algorithm is the Langevin dynamics algorithm [19].

Stochastic Differential Equations [20] based data synthesis is another interesting approach.
Just like the previous two methods, here the data is also transformed into noise. However, the
diffusion process is considered to be continuous, it can be defined to be the solution of a SDE.
The SDE describing the diffusion process is the following,

∂x

∂t
= f(x, t) + σ(t)ωt ⇐⇒ ∂x = f(x, t) · ∂t+ σ(t) · ∂ω,

where ωt are standard normal variables, σ is a time-dependent function that computes the
diffusion coefficient, and f computes the drift coefficient. To have a diffusion process as a
solution, the drift coefficient should be designed such that xt gradually becomes pure noise.
Now the aim is just like before, to reverse this process. The reverse is defined as,

∂x = [f(x, t)− σ(t)2 · ∇x log pt(x)] · ∂t+ σ(t) · ∂ω̂,

where ω̂ is the time reversed Brownian motion. The job of our neural network is to learn
∇x log pt(x), just like before. For sampling, we can use any numerical SDE solver.

In the last couple of years, DDPMs have been researched extensively, while other formula-
tions have not. Future research should focus on these two underexplored areas.

3 Unconditional Image Synthesis

To be able to apply Diffusion Models to image segmentation one first has to implement them
for their primary function, which is unconditional image synthesis. In this section, I am going
to present the dataset and the model architecture that was used to generate unconditional
samples.

3.1 The Dataset

In all of the experiments, the COVID-QU [2] dataset was used. The dataset contains 33,920
chest X-ray of which 11,956 has COVID-19, 11,263 has non-COVID infections (Viral or Bac-
terial Pneumonia), and 10,701 are X-rays of normal lungs. Additionally, the whole dataset
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includes segmentation masks for lungs. The infection dataset is a smaller subset of the data, it
contains 1,456 Normal and 1,457 non-COVID-19 chest X-rays with corresponding lung masks,
plus 2,913 COVID-19 chest X-rays with corresponding lung mask from the COVID-QU-Ex [2]
dataset and corresponding infection masks from the QaTaCov19 [5] dataset.

Since training and sampling diffusion models is a memory-heavy process, all of the training
and sampling in the experiments was done on images of size 64× 64× 1.

3.2 Model Architecture

During training the model used 1000 diffusion steps. A linear noising schedule was employed
with β0 = 0.0001 and β1000 = 0.02, this controls how much noise we add at each diffusion step.
These hyperparameters have remained fixed throughout our experiments.

In last semester’s experiments, we concluded that the DDIM [18] sampling technique was
superior to the classical approach. During sampling, we used this approach with 50 DDIM
steps.

The model architecture described below is based on Rombach et al. [14] with the exception
that we didn’t use a latent encoder or decoder and that the input and output channels of the
U-Net were fit to our dataset. The input of the noise-predicting U-Net model is an image of
size 64 × 64 with one channel and the timestep embedding. The output is a denoised image
of size 64 × 64 with one channel. First, the input image is transformed with a convolutional
layer to an image of the same spatial size, but with 192 channels. After the first step, the input
passes through the three segments of the U-Net [15], an encoder, a middle, and a decoder part.
To define the architecture, one must first describe the two other major building blocks of our
U-Net: Residual Blocks and Linear Attention.

A Residual Block has two inputs, an image, and the timestep embedding. Given a
timestep t, first, a sinusoidal positional embedding is calculated, it is a vector of size 192,
and then it is transformed with linear layers and SiLU activation to a vector of size 4 · 192.
Then, the input image is normalized using Group Normalization, and it is passed through a
SiLU activation. If the Residual Block is used for down or upsampling, average pooling or
nearest interpolation is applied to the output of the previous step. The output is then passed
through a convolutional layer. Then the timestep embedding is passed through SiLU and a
linear layer and added together with the output of the previous step, the output is then passed
through a Group Normalization layer, a SiLU activation and a convolutional layer. The output
of the Residual Block is the sum of the previous step and the original input that was down or
upsampled so the shapes fit.

A Linear Attention Layer first flattens the spatial dimensions of the input. After nor-
malizing the input, Q, V,K matrices are calculated with a one-dimensional convolutional layer.
Then the rows of the matrices are cut up to equal pieces of size 64. After this the following

formula is calculated: softmax(QKT
√
D
)V , where Q, V,K are now the submatrices and D is a

scaling parameter, the outputs are then concatenated and transformed back to the shape of
the input. Finally, the output is given by the sum of the input and the output of the previous
step.

Now we can define the Encoder. The encoder has multiple levels, and each level has two
Residual Blocks and a downsampling Residual Block. The first Residual Block grows the image
channels, the second keeps the image dimensions the same the third RB downsamples the image
spatial dimensions by a factor of two. The number of channels on each level is controlled by
the channel mult hyperparameter. In our case, the first level has 192, then 2 × 192, 3 × 192,
and finally 4 × 192. Additionally, Attention layers are applied at levels of spatial resolution:
32× 32, 16× 16, 8× 8, after each non-downsampling Residual Block.

The Middle part of the U-Net is made up of two Residual Blocks and a Linear Attention
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Layer in the middle. These Residual Blocks keep the channel size constant.
The structure of the Decoder part matches the encoder, but instead of downsampling on

each level, the Residual Block upsamples by a factor of two, and the input of each level is the
concatenation of the output of the level of the Encoder with the same spatial resolution and the
output of the previous Decoder level. The final output is then obtained by passing the output
of the Decoder through a Group Normalization Layer, a SiLU activation, and a convolutional
layer which transforms the image back to its original shape.

Figure 2: Example of an image and the image after adding noise and passing it through the
U-Net. As you can imagine, one U-Net pass has removed some noise. During vanilla sampling,
1000 passes would be completed.

4 Conditional Image Synthesis

In conditional image synthesis, we aim to generate data from the conditional densities of our
dataset. With diffusion models, this is usually achieved by adding the information about
the conditioning to the noise estimating model, which will be in the form of εθ(x, y, t). One
major architectural question is how we should add information about the conditioning. A usual
approach is to simply concatenate, add it to the input of the U-Net or use cross-attention to add
it to intermediate levels of the U-Net. In the latter part of this section, we are going to present
the results of our experiments which have compared the effectiveness of the first two methods.
This area of Diffusion Model research seems underexplored thus, future experimentation might
be useful.

4.1 Diffusion Models in Image Segmentation

Image Segmentation is a major problem in computer vision. It involves assigning a label to
each pixel, such that pixels with the same label belong to the same kind of object.

Amit et al. [1] tackle image segmentation as a conditional image synthesis task. Here they
perform the diffusion steps on the segmentation masks and condition the noise estimating
U-Net on the original image. With this method they have been able to achieve state-of-the-
art results on the Cityscapes validation set, the Vaihingen building segmentation benchmark
and the MoNuSeg dataset. Baranchuk et al. [3] show that the intermediate activations of the
denoising U-Net capture semantic information well. They use a classifier on the upsampled
activations to obtain a segmentation mask. Pinaya et al. [12] detect and segment anomalies
on MRI data. First, they train a Diffusion Model on a healthy dataset. Using an anomalous
image as an input will result in large loss values at anomalous regions. With an appropriate
threshold, they can create a segmentation mask.
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Figure 3: Synthetic Images of Chest X-Rays Generated from a Diffusion Model

Our approach resembles Amit et al. [1]. We aim to generate segmentation masks conditioned
on the original image. One of the main questions of this approach is how we should supply
the original image to the denoising U-Net. In the last part of this section, we are going to
present results that compare different ways of conditioning to state-of-the-art results on the
COVID-QU segmentation dataset.

4.2 Model Architecture

As mentioned previously, we tested two methods for adding the conditioning to the denoising
U-Net. These two are adding conditioning by concatenation, and adding the conditioning to
the image input of the U-Net. In both cases the conditioning, in this case the original image,
was transformed by a Residual in Residual Dense Block, used by Amit et al. [1].

AResidual in Residual Dense Block(RRDB) includes three Residual Dense Blocks(RDB).
A Residual Dense Block has 5 convolutional layers, after each layer follows a Leaky ReLU ac-
tivation. Each of the 5 convolutional layers has the output of the previous layers as input,
finally, the input of the RDB and output of the last layer is added. The output of the RRDB
is obtained by passing the input through all the RDBs and combining it with the input. In our
case, the RRDB transforms the input from 64× 64× 1 to 64× 64× 16. According to Amit et
al. [1] increasing the number of RRDB blocks doesn’t affect the mIoU much, however not using
a condition embedder yields significantly worse results.

The rest of the U-Net architecture used in our segmentation experiments is the same as in
Section 3.2 with the only difference that it has 16 or 17 input channels, depending on whether
we add the conditioning with addition or concatenation.
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4.3 Segmentation Quality Metrics

One of the main disadvantages of diffusion models is their inference speed. Thus evaluating the
performance of diffusion models becomes a slow task. For this reason, we calculate the following
metrics on 512 random data samples from the validation and train dataset in each epoch, the
random seed used for sampling was the same across all measurements, so it makes sense to
compare them. Still, the small sample size used for calculating the metrics does introduce some
variance. Amit et al. [1] calculated the segmentation mask by inferring multiple times with
the same conditioning and averaging the mask. Because of the nondeterministic nature of the
DDIM sampling method [18], this approach yields more stable and accurate results, however
because of the high inference costs we decided to calculate each mask one time.

Image segmentation can be thought of as the classification of each pixel into various cate-
gories. In this project, we only concerned ourselves with the case of binary classification, we
used a confidence threshold of 0.5 on all of our experiments. Therefore, the following metrics
are calculated from the confusion matrix: DICE-index, Jaccard-index, Accuracy, Sensitivity,
Specificity, Balanced Accuracy, Precision, and Matthew’s correlation coefficient. The most
important metric is the DICE-index, which equals to

2TP

2TP + FN + FP
.

4.4 Lung Segmentation on COVID-QU

The previous best result on the lung segmentation COVID-QU dataset achieved by the Com-
puter Vision Group is a 0.99 DICE index with multiple variations of U-Net models.

Our diffusion models were trained for 100 epochs, around 4000 gradient steps, with a learning
rate of 0.003 and a batch size of 512. These hyperparameters were carefully optimized since
the training process would become unstable otherwise. Table 1 below summarizes our results.
The results were not vastly different between the two models, although Amit et al.
citeamit2021segdiff found that addition should produce better results in most cases. One reason
for not noticing a significant difference between the two methods could be, that the complexity
of the task is not high enough. Our models also produce comparable results with the U-Net
models.

Addition Concatenation

DICE index 0.9529 0.9541
Jaccard index 0.9101 0.9123
Accuracy 0.9792 0.9793
Sensitivity 0.9455 0.9502
Specificity 0.9888 0.9878

Balanced Accuracy 0.9672 0.9793
Precision 0.9604 0.9581
MCC 0.9396 0.9408

Table 1: Measured metrics on the COVID-QU lung segmentation validation dataset from the
last epoch.

4.5 Infection Segmentation on COVID-QU

The previous best results on the infection segmentation COVID-QU dataset achieved by the
Computer Vision Group are 0.86 with a U-Net model and 0.85 by the Res50AttUNet model.
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Figure 4: Examples of generated lung segmentation mask(left) and the original mask(right),
the conditioning was supplemented via addition

Figure 5: Examples of generated lung segmentation mask(left) and the original mask(right),
the conditioning was supplemented via concatenation

Our diffusion models were trained for 2400 epochs and 8000 gradient steps, with a learning
rate of 0.003 and a batch size of 512. Here the produced results are like expected, supplying the
conditioning with addition has reached much better results than supplying it with concatena-
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tion, see Table 2. The infection segmentation problem is a much more difficult task, therefore
differences in model performance are more noticeable. Also, the variance of the metrics was
high between batches. Although measuring the metrics is a time-consuming task, in the future I
should let some experiments run for a longer time so we can get a clearer picture of the model’s
performance and reach a level where it can rival the U-Nets. The reason for the models’ subpar
performance compared to some U-Nets could be that the original purpose of diffusion models
is image synthesis, while we can get some acceptable results in image segmentation further
research is required to reach state-of-the-art results on multiple datasets.

Addition Concatenation

DICE index 0.6755 0.4708
Jaccard index 0.5105 0.3087
Accuracy 0.9183 0.8967
Sensitivity 0.6687 0.3646
Specificity 0.9550 0.9736

Balanced Accuracy 0.8119 0.6691
Precision 0.6838 0.6674
MCC 0.6293 0.4431

Table 2: Measured metrics on the COVID-QU infection segmentation validation dataset from
the last epoch.

Figure 6: Examples of generated infection segmentation mask(left) and the original mask(right),
the conditioning was supplemented via concatenation
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Figure 7: Examples of generated infection segmentation mask(left) and the original mask(right),
the conditioning was supplemented via addition

5 Summary

The goal of this summary was to show my progress over the last semester. I furthered my knowl-
edge about diffusion models, and similar models such as Noise Conditioned Score Networks,
and Stochastic Differential Equations. I have kept up to date with the literature. I estab-
lished an environment conducive to the training and testing of diffusion models. This includes
understanding the technical details of the implementations. And finally, I ran experiments to
compare the effectiveness of different conditioning methods.

Now that I have a working environment for diffusion models, my focus can be redirected
from technical details to experimentation. Hopefully, this will yield good results for my thesis
next semester.
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