
STOCHASTIC RECURSIVE OPTIMIZATION:
A STRUCTURED MULTI-ARMED BANDIT PROBLEM

Roland Szögi
Supervisor: Balázs Csanád Csáji

INTRODUCTION

1 / 17

MULTI-ARMED BANDIT MODEL

▶ The multi-armed bandit model consists of a set of arms A.
▶ To every arm a ∈ A belongs a distribution ν(a).
▶ In each round an arm a ∈ A is chosen and a reward R(a) is sampled from distribution ν(a).
▶ An arm is called optimal, if it has the highest expected reward among all of the arms.

Definition 1.1
An arm a ∈ A is called ε-optimal if

E[R(a)] ≥ r∗ − ε,

where r∗ denotes the expectation of the optimal arm.

▶ The goal is to find an ε-optimal arm for a given ε.

Definition 1.2
An algorithm is called (ε, δ)-PAC (probably approximately correct), if it returns an ε-optimal arm with
probability at least 1 − δ.

2 / 17

CONTINUOUS CASE

Assumption 1

The arms are the points of the [0, 1] interval and the expectation of arm a ∈ [0, 1] is f (a), where f : [0, 1] → R
is an unknown concave function.

3 / 17

OBSERVATIONS

µ1 ≤ µ2 =⇒ f (x) ≤ µ2 ∀ x ∈ [x0, x1].
µ3 ≤ µ2 =⇒ f (x) ≤ µ2 ∀ x ∈ [x3, x4].

4 / 17

OBSERVATIONS

µ1 ≥ µ2 =⇒ f (x) ≤ µ2 ∀ x ∈ [x2, x4].
µ3 ≥ µ2 =⇒ f (x) ≤ µ2 ∀ x ∈ [x0, x2].

Figure. Enter Caption 5 / 17

OBSERVATIONS

µ2 − ε/2 ≤ µ1, µ3 ≤ µ2 + ε/2 =⇒ f (x) ≤ µ2 + ε ∀ x ∈ [x0, x4].

6 / 17

OBSERVATIONS

µ2 − ε/2 ≤ µ1, µ3 ≤ µ2 + ε/2 =⇒ f (x) ≤ µ2 + ε ∀ x.

7 / 17

ALGORITHM

If |µi − µ̂i| ≤ ε/8 ∀ i = 1, 2, 3 then:
▶ µ̂1 ≤ µ̂2 − ε/4 =⇒ µ1 ≤ µ2 =⇒ f (x) ≤ µ2 ∀ x ∈ [x0, x1] =⇒ remove arms in [x0, x1].

▶ µ̂1 ≥ µ̂2 + ε/4 =⇒ µ1 ≥ µ2 =⇒ f (x) ≤ µ2 ∀ x ∈ [x2, x4] =⇒ remove arms in [x2, x4].

▶ µ̂3 ≤ µ̂2 − ε/4 =⇒ µ3 ≤ µ2 =⇒ f (x) ≤ µ2 ∀ x ∈ [x3, x4] =⇒ remove arms in [x3, x4].

▶ µ̂3 ≤ µ̂2 + ε/4 =⇒ µ3 ≥ µ2 =⇒ f (x) ≤ µ2 ∀ x ∈ [x0, x2] =⇒ remove arms in [x0, x2].

▶ µ̂2 − ε/4 ≤ µ̂1, µ̂3 ≤ µ̂2 + ε/4 =⇒ µ2 − ε/2 ≤ µ1, µ3 ≤ µ2 + ε/2 =⇒ f (x) ≤ µ2 + ε ∀ x
=⇒ return x2.

We repeat this until the algorithm terminates.
We only make mistake when ∃i ∈ {1, 2, 3} : |µ̂− µi| ≥ ε/8. In round ℓ we sample the three arms so
many times, that

P(|µ̂i − µi| ≥ ε/8) ≤ δ

3 · 2ℓ
∀ i = 1, 2, 3.

In this case the probability of making a mistake in the ℓth round is

P(∃i ∈ {1, 2, 3} : |µ̂− µi| ≥ ε/8) ≤ δ

2ℓ
,

and the probability that the algorithm makes a mistake in any of the rounds is less than δ.

8 / 17

SUBGAUSSIAN RANDOM VARIABLES

Definition 1.3
A random variable X is 1-subgaussian if for all λ ∈ R :

E[exp(λX)] ≤ exp

(
λ2

2

)
.

Statement 1
Assume that Xi − µ are independent, 1-subgaussian random variables. Then for any ε > 0,

P(µ̂ ≥ µ+ ε) ≤ exp

(
−nε2

2

)
,

P(µ̂ ≤ µ− ε) ≤ exp

(
−nε2

2

)
where µ̂ = 1

n
∑n

i=1 Xi.

Remark 1
For random variables that are not centered (E[X] ̸= 0), the notation is abused by saying that X is
1-subgaussian if the noise X − E[X] is 1-subgaussian.

9 / 17

ALGORITHM

1. The arms are the points of the [0, 1] interval and the expectation of arm a ∈ [0, 1] is f (a), where
f : [0, 1] → R is an unknown concave function.

2. The arms are 1-subgaussian.

Input: δ > 0, ε > 0
Output: an arm which is ε optimal with probability at least 1 − δ

Set ℓ = 1, δ1 = δ/2, S1 = [0, 1], x1
0 = 0, x1

1 = 0.25, x1
2 = 0.5, x1

3 = 0.75, x1
4 = 1.

1: while TRUE do
2: Sℓ+1 = Sℓ.
3: Sample nℓ = ⌈128 log(6/δℓ)/ε2⌉ times the three arms: xℓ1, xℓ2, xℓ3.

Let µ̂ℓ
1, µ̂

ℓ
2, µ̂

ℓ
3 denote the sample means and µℓ

1, µ
ℓ
2, µ

ℓ
3 denote the expectations.

if µ̂ℓ
1, µ̂

ℓ
3 ∈ (µ̂ℓ

2 − ε/4, µ̂ℓ
2 + ε/4) then return xℓ2.

if µ̂ℓ
1 ≥ µ̂ℓ

2 + ε/4 then Sℓ+1 = Sℓ+1 \ (xℓ2, xℓ4].
if µ̂ℓ

1 ≤ µ̂ℓ
2 − ε/4 then Sℓ+1 = Sℓ+1 \ [xℓ0, xℓ1).

if µ̂ℓ
3 ≥ µ̂ℓ

2 + ε/4 then Sℓ+1 = Sℓ+1 \ [xℓ0, xℓ2).
if µ̂ℓ

3 ≤ µ̂ℓ
2 − ε/4 then Sℓ+1 = Sℓ+1 \ (xℓ3, xℓ4].

4: xℓ+1
0 = minSℓ+1, xℓ+1

4 = maxSℓ+1,

xℓ+1
1 = 3

4 · xℓ+1
0 + 1

4 · xℓ+1
4 , xℓ+1

2 = 1
2 · xℓ+1

0 + 1
2 · xℓ+1

4 , xℓ+1
3 = 1

4 · xℓ+1
0 + 3

4 · xℓ+1
4 .

5: δℓ+1 = δℓ/2, ℓ = ℓ+ 1
6: end while

10 / 17

DISCRETE CASE

Assumption 2

There are n, arms numbered from 0 to n − 1.

Assumption 3

The expectation of arm i is f (i), where
f : R → R is an unknown concave function.

Assumption 4

The arms are 1-subgaussian.

Problem 1
We cannot use the previous algorithm, because the arms might not be divided into 4 equal-length subintervals
with 3 arms.

Solution 1
Modify the algorithm so that the set of arms is halved in each round. With this algorithm we can solve the
special case when there are 2m + 1 arms, and solve the general case with this special case.

11 / 17

SPECIAL CASE

We want to remove half of the arms in each round.
The problematic cases, when the previous algorithm removes only one-fourth of the arms:
▶ µ̂ℓ

1 ∈ (µ̂ℓ
2 − ε/4, µ̂ℓ

2 + ε/4) and µ̂ℓ
3 ≤ µ̂ℓ

2 − ε/4
▶ µ̂ℓ

1 ≤ µ̂ℓ
2 − ε/4 and µ̂ℓ

3 ∈ (µ̂ℓ
2 − ε/4, µ̂ℓ

2 + ε/4)

Solution 2
In the first case, sample the arm xℓ1.5 = (xℓ1 + xℓ2)/2 many times, estimate its expectation with the sample
mean and remove arms based on this information. In the second case, sample xℓ2.5 = (xℓ2 + xℓ3)/2.

12 / 17

SPECIAL CASE

If µ̂ℓ
1 ∈ (µ̂ℓ

2 − ε/4, µ̂ℓ
2 + ε/4) and µ̂ℓ

3 ≤ µ̂ℓ
2 − ε/4, we sample xℓ1, xℓ1.5, xℓ2 so many times that with high

probability |µ̂ℓ
i − µℓ

i | ≤ ε/12 ∀ i = 1, 1.5, 2.
If |µ̂ℓ

i − µℓ
i | ≤ ε/12 ∀ i = 1, 1.5, 2, then:

▶ µ̂1 ≤ µ̂1.5 − ε/6 =⇒ µ1 ≤ µ1.5 =⇒ f (x) ≤ µ1.5 ∀ x ∈ [x0, x1] =⇒ remove arms in [x0, x1].

▶ µ̂1 ≥ µ̂1.5 + ε/6 =⇒ µ1 ≥ µ1.5 =⇒ f (x) ≤ µ1.5 ∀ x ∈ [x1.5, x4] =⇒ remove arms in [x1.5, x4].

▶ µ̂2 ≤ µ̂1.5 − ε/6 =⇒ µ2 ≤ µ1.5 =⇒ f (x) ≤ µ1.5 ∀ x ∈ [x2, x4] =⇒ remove arms in [x2, x4].

▶ µ̂2 ≤ µ̂1.5 + ε/6 =⇒ µ2 ≥ µ1.5 =⇒ f (x) ≤ µ1.5 ∀ x ∈ [x0, x1.5] =⇒ remove arms in [x0, x1.5].

▶ µ̂1.5 − ε/6 ≤ µ̂1, µ̂2 ≤ µ̂1.5 + ε/6 =⇒ µ1.5 − ε/3 ≤ µ1, µ2 ≤ µ1.5 + ε/3 =⇒ f (x) < µ1.5 + ε ∀ x
=⇒ return x1.5.

13 / 17

GENERAL CASE

If there are 2m + 1 < n < 2m+1 + 1 arms, we can do the following:
Run the first round of the new algorithm with arms{

i :
⌊n

2

⌋
− 2m−1 ≤ i ≤

⌊n
2

⌋
+ 2m−1

}
,

x1
0 =

⌊n
2

⌋
− 2m−1, x1

1 =
⌊n

2

⌋
− 2m−2, x1

2 =
⌊n

2

⌋
,

x1
3 =

⌊n
2

⌋
+ 2m−2, x1

4 =
⌊n

2

⌋
+ 2m−1

and δ0 = δ/2. If after the first round:
▶ S2 = {i : x1

0 ≤ i ≤ x1
2}, then set

S = {i : 0 ≤ i ≤ 2m} ,

▶ S2 = {i : x1
1 ≤ i ≤ x1

3}, then set

S =
{

i :
⌊n

2

⌋
− 2m−1 ≤ i ≤

⌊n
2

⌋
+ 2m−1

}
,

▶ S2 = {i : x1
2 ≤ i ≤ x1

4}, then set
S = {i : n − 2m ≤ i ≤ n} .

The length of S is 2m + 1 in all cases. Run the new algorithm with S and δ0 = δ/8.
14 / 17

SAMPLE COMPLEXITY

Theorem 1
The sample complexity of this algorithm when there are n arms:

O
(

1
ε2

(
(log n)2 + log n · log 1

δ

))
.

In this case the Median Elimination algorithm could be used to find an ε-optimal arm with
probability at least 1 − δ with a sample complexity of

O
(

n
ε2 log

1
δ

)
.

15 / 17

SAMPLE COMPLEXITY

If there is a known ∆ such that |µi − µi−1| ≤ ∆, i = 1, 2, ...,n, then the algorithm can terminate when
the number of arms is 2 · ⌊ ε

∆⌋+ 1 or less, by returning the arm in the middle. In this case the

algorithm can terminate after
⌊
log2

n
2⌊ε/∆⌋+1

⌋
rounds so the sample complexity in this case is:

O
(
ℓ2

ε2 +
ℓ

ε2 log
1
δ

)
.

where ℓ =
⌊
log2

n
2⌊ε/∆⌋+1

⌋
.

Similarly, if f is Lipschitz continuous with Lipschitz constant L, then the algorithm can terminate,
when the length of the interval is less than or equal to 2 · ε/L by returning the arm in the middle. In
this case the algorithm terminates in

ℓ =

⌊
log2

L
ε

⌋
rounds so the sample complexity is

O

(
1
ε2

((
log

L
ε

)2

+

(
log

L
ε

)
· log 1

δ

))
.

.
16 / 17

Thank You For Your Attention!

17 / 17

	
	Algorithm
	

