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1 Introduction

In my second phase of my project we left the Berlin marathon due to the few and
unreliable data. From this time, we are working with the data of the Boston Marathon,
where we have much more information about every competitor from 1898 to 2019. (data:
[5] & [3]) Our goal has been to try to predict the best expected results of the following
years based on our knowledge. For this purpose, we've used the Pareto distribution to
see if there would ever be a sub-two hours Boston Marathon time in the near future.

Throughout my work, I continued to use the R programming language.

2 Data

During this semester, cleaning and processing the data also proved to be a serious
task, since at the beginning of the 20th century the results were not recorded as precisely
as they are today. Furthermore, on the competition’s official page ([5]) the data of the
half-marathoners or wheelchair marathoners have not yet been separated, which would
significantly distort the final picture. After solving these problems and cleaning them,
approx. 614000 rows were left. (in the ratio of 1:2 women to men). Since our primal
goal was to fit the Pareto distribution for each year, we have to consider the amount of
data. Given that there were enough recorded finishers, the process of trimming the data
below the threshold proved to be effective in obtaining acceptable estimates based on the
retained information. In the case of male competitors, from 1975, while for women from
1981, that we do not get misleading parameters when fitting the distribution. As in the
first semester, the running results are understood in seconds and received a multiplier of
—1, since the models are looking for maximum, while we are looking for the best (i.e.

minimal) result.

3 Pareto-distribution

3.1 Theoretical Background

The Pickands—Balkema—De Haan [2| theorem is a fundamental result in extreme value
theory, establishing a connection between the tail behavior of a distribution and the
Generalized Pareto Distribution (GPD). This theorem states that, for a wide class of
distributions and a sufficiently high threshold wu, the distribution of exceedances X — u

above this threshold, properly normalized, converges in distribution to the GPD. The
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GPD is characterized by its cumulative distribution function:

Fla)=1— (1+ax;5)_1/a’ (1)

where v is the scale parameter, 3 is the location parameter, and « is the shape parameter.
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And z-F fora >0, — > u >0 for a« < 0and F(zr) =1—e#if @« = 0 This result

Y a g
is particularly valuable for modeling extreme events, as it allows practitioners to focus on

the tail behavior of the distribution and estimate parameters crucial for risk assessment
and extreme value prediction. The Pareto distribution, denoted by X Pareto(«, z,,) is
a continuous probability distribution defined for = > x,, with parameters a@ > 0 (shape
parameter) and x,, > 0 (scale parameter). The probability density function of the Pareto-

distribution is given by:
ars

[ = S > 2)

Here, a governs the shape of the distribution and z,, is the minimum possible value. The

cumulative distribution function is:

Ln

f(w;a,a:m)zl—(?)a,xzxm (3)

The expected value (i) and variance (02) of the Pareto-distribution are the following:

2
Y for a > 1% = o , for a > 2 (4)

F= o (o —1)*(ax — 2)

The Pareto distribution is particularly useful in modeling situations where a small fraction
of the population accounts for a large proportion of the total, such as income distribu-
tion, city population sizes, and wealth distribution. In the introduction of the Generalized
Pareto Distribution (GPD), we acknowledge that extreme values in a system are infre-
quent and concentrated, deviating from the behavior of typical distributions. The GPD
is theoretically designed to model values that surpass the average behavior of the system,
and it plays a key role in the concept of limit distributions, notably the Maximum Domain
of Attraction (MDA). The MDA condition is precisely where the GPD limit is satisfied.(1)
This condition implies that extreme values associated with certain types of distributions,
occurring at large magnitudes within the system, approximately follow the same distri-
bution. Therefore, when the MDA condition is met, the GPD becomes a suitable model
for extreme values. This relationship is fundamental in understanding and characterizing
extreme events, as the GPD efficiently enables the modeling of extreme values. It does
so by employing parameters that govern the deviation and variability of values from the

mean in the extreme range, providing a valuable tool for the analysis and estimation of
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Year Quantil(3) 2:::’ Threshold ;‘::E;‘::j ;:'::::r ;‘::‘IE ;‘:;pe ‘:‘3;:22 Estimation g:?:t;::d
par par
1 1975 50 927 10918.16 14184108 -D4456972 14118555  -0.4440285 7.546909e-03 7738516 49.51586
2 a7 1 308 -10884.00 13965458 -D4434493  1617.5068 -05214033  5.744642-10 7781.782 49.44621
3 1975 52 590 -10805.54 13024495 -D4198453  1299.2676 -0.4185289  8.232951e-02 7701472 48.62920
4 1975 53 572 10787.68 13041006 | -D4233710 | 13036204 | -0.4234654 | 1.547766¢-01 7709.368 48.92214
5 1975 54 854 -10769.52 13079152 -D4281928 14639626 -0.4890195 1.562653e-05 T765.626 49.12656
6 1975 35 536 1075236 13140362 -D4337263 15054042  -05050780 1.230791e-06 771528 49.36706
7 975 36 518 10732.20 13154204 -DA377978 | 15332460 | -05182084 4.725113e-08 TTT3.456 49.63352
8 1975 57 500 10715.08 13220075 -D4433014 | 13223081  -0.4438671  1.514391e-02 736017 50.04544
9 1975 3 781 -10657.76 12655460 -D4306276  1447.2625  -05009250 4.374272e-06 T768.580 4952528
10 1975 763 1061858 12377245 -D4253474 | 1389.1585 -0.4869013  8.556213-05 T765.520 49.36464

Figure 1: Parameter-table

extreme events in diverse systems. Therefore, the GPD enables effective modeling and
estimation of extreme values, aiding in the understanding and handling of phenomena
occurring in the extreme range of a system. Not to forget to mention that, in the case of a
negative shape parameter the distribution is bounded from above. Since we modeled the
exceedances this semester, we did not need the location parameter () in the formulas,

which is set to 0.

3.2 Data fitting

As a result of this, we applied the Pareto distribution to our dataset annually, fitting
it with quantiles ranging from 50 to 99 for each year to obtain the optimal parameters
separately for each year usint the gpd.fit function (see:[1]). For this purpose, we first fit-
ted the distribution with quantiles from 50 to 99, saving the results along with necessary
information in a table (1). The selection of the threshold was also a crucial step in fitting
the distribution for us. Based on the theoretical background of the Generalized Pareto
Distribution (GPD), we know that with an inappropriate threshold, our parameter esti-
mates will be inaccurate. Therefore, we examined so many quantiles and the goodness of
fit to find a threshold where the fit becomes acceptable. After selecting the quantiles, it
became apparent to us that as we progress through the years, the threshold decreases dur-
ing the fitting process, reaching a point where the fit becomes acceptable. Subsequently,
we selected the best values using the Anderson-Darling test [1], considering the p-value (it
must be grater than 0.05), standard error, ensuring that the parameters obtained during
the Anderson-Darling test did not significantly deviate from our fitting estimation (A few
estimates could exhibit differences ranging from several hundred to even several thousand,
thus, despite their p-values, we had to reject them) and the estimated value did not differ
significantly from the original fastest time. We re-examined the fits based on the selected

quantiles and assessed the diagnostic plots for these.
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Figure 2: 1976 diag. Figure 3: 2019 diag.

4 Analysis and estimation

In Table 2 and 3, we observe diagnostic plots for men in 1976 and 2019. The figure
clearly shows that the probability plots and quantile plots are quite similar with minimal
differences. The density plot also reflects the earlier point that in 2019, data is more
densely packed over a shorter time interval than in 1976. If we examine the other plots,
the density plots consistently indicate an improving trend year by year. After selecting
the appropriate quantile, we obtained the parameters and the covariance matrix from the
corresponding fit. From this, we generated a sample of 200 elements for each year according
to a normal distribution with the given parameters. We used these parameters to make
200 estimates for each year. As a filtering step during the estimates, we trimmed the top
and bottom 5 percentage. This process is illustrated in the Table 4 (with male data) and
the 5 (with female data). The red line indicates the actual best running result, while the
gray area represents where our estimates fell. Our initial assumption was that the gray
area would narrow over time, but based on the obtained estimates, this assumption is not

fulfilled (or only to a small extent).

5 Summary

This semester, our primary focus was on applying the Pareto distribution. We ex-
amined data from the Boston Marathon to understand how well the distribution could
be fitted and explored optimal parameter selection methods to enhance our estimations.
The project aimed to provide predictions for future race winners, and the application of
extreme value theory, including the Pareto distribution, proved to be an effective method.
There is hardly any trend in the forecasted best possible time times, so it looks that
(assuming the current level of participants’ and the course setting to hold) it might take

quite a long time, till the winning time here will go below the magic 2 hours
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6 Goals

It would be worthwhile to examine the relationship between the Berlin Marathon,
analyzed in the previous semester, and the Boston Marathon used in the current analysis
in the upcoming semester. Additionally, applying multidimensional models could facili-
tate the comparison of estimations between female and male participants. If there are
opportunities throughout the semester to explore data from other races and compare
them, considering various additional variables could also be insightful and a more accu-

rate mathematical representation.
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