Modelling sport results with extreme value methods

Csáfordi József András Applied Mathematician MSc

Supervisor: Dr. Zempléni András

Contents

- Previous work and changes
- Generalized Pareto Distribution
- Igorithm
- Oifferent plots and figures
- Analysis
- Goals during the next semesters

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Previous work and changes

Previous work

- Berlin marathon
- Block maxima method
- Annual winning times
- Change in time
- It was possible to work with less data

Current work

- Boston marathon
- Threshold method
- The data should be below the limit

A B A A B A

- Each year separately
- It requires more data

Generalized Pareto Distribution

- Generalized Pareto Distribution (GPD)
- Cumulative distribution function:

$$F(x) = 1 - \left(1 + \alpha \frac{x - \beta}{\gamma}\right)^{-1/\alpha}$$

where γ is the scale parameter, β is the location parameter, and α is the shape parameter

- The location parameter β in the formulas is set to 0
- The maximum estimator, where μ is the threshold :

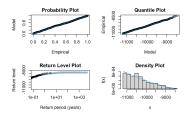
$$\mu - \frac{\gamma}{\alpha}$$

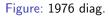
通 ト イ ヨ ト イ ヨ ト

Algorithm

- Data processing and cleaning
- Por loop each year and each quantile
 - gpd.fit and ad.test
 - Upload parameter table
- Appropriate quantile in a for loop
- Oiagnostic of this parameters
- Different plots and analysis

< 同 ト < 三 ト < 三 ト


Parameter table


-	Year 🎈	Quantile(%)	Data size 🔅	Threshold $\hat{}$	Estimation $\ ^{\diamond}$	Estimated Scale par $\ ^{\diamond}$	Estimated Shape par 🔅	P value
1	1975	50	927	-10918.16	-7738.516	1418.4108	-0.4456972	7.546909e-03
2	1975	51	908	-10884.00	-7781.782	1396.9488	-0.4434493	8.744642e-10
3	1990	60	2674	-12066.61	-7200.626	1372.0213	-0.2820389	1.074408e-05
4	1990	61	2608	-12019.00	-7530.687	1339.9466	-0.2750227	2.116735e-22
5	2000	80	2142	-11350.58	-7687.141	853.9196	-0.1826570	5.967873e-15
6	2000	81	2040	-11295.60	-7534.899	823.7002	-0.1722140	3.970602e-13
7	2019	92	1318	-10380.00	-7571.126	635.2455	-0.1331953	7.957052e-02
8	2019	93	1174	-10304.12	-7500.268	621.9485	-0.1292419	2.938754e-02

3

イロン イ理 とく ヨン イ ヨン

Diagnostic plot

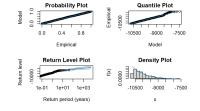
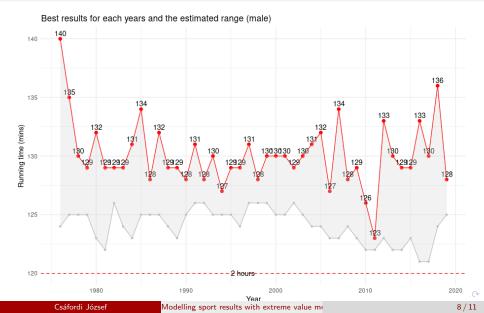



Figure: 2019 diag.

(日)

æ

Plot

- Appropriate quantile from covariance matrix
- Sample generation from normal distribution with respect the 95% quantile
- Estimated range from the generated sample and the minimum of this range

・ 同 ト ・ ヨ ト ・ ヨ ト

Goals during the next semester

- Berlin Boston relationship
- Multidimensional modells:
 - Berlin-Boston marathon
 - Female-Male comparison
 - Boston with other races
- Additional variables (if possible)

4 3 4 3 4 3 4

Thank you for your attention!

э

イロト イボト イヨト イヨト