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1 Introduction

The subject of this sememester’s project was medical image segmentation of abdon-

imal CT scan images. Here I will present the topics that I researched relating to

this area, along with some experimental results.

2 Segmentation

2.1 Task

Consider an image as an x ∈ [0, 1]L×H×W tensor.1 The task of segmentation is

to find a segmentation mask y ∈ {0, 1}C×H×W . In multiclass segmentation, y is

usually restricted such that for all (i, j), exactly one of y1ij . . . yCij is 1. In practice,

the output of a segmentation model will be a ŷ ∈ [0, 1]C×H×W , where for each h and

w, ŷ0,h,w + . . . + ŷC−1,h,w = 1. The final prediction then is obtained by taking the

index c where ŷc,h,w is maximal.

2.2 Metrics

In multiclass classification problems, measuring the accuracy (i. e. the percentage

of accurately predicted datapoints) is frequently used, but it can be misleading in

1Here L denotes the channel size (eg. 3 for RGB images), following PyTorch’s example and
using the channel-first represenation.
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medical image segmentation problems, since most pixels will belong to the back-

ground class, therefore the trivial model that always predicts the background will

have high accuracy.

In binary segmentation problems, there are several well known metrics designed

to provide an accurate measurement for imbalanced data, such as the Dice index,

Jaccard index, or the average precision score (the area under the precision–recall

curve), or HD95 (average modified – 95th percentile – Hausdorff distance). For

multiclass segmentation, a mean value for these is frequently used. For example,

the mean Dice index is obtained as follows: except for the background, we calculate

the Dice index value for all classes in a “one versus all” manner, i. e. treating the

given class as positive, and all other classes as negative, and calculating the binary

Dice index. Then we take the average of the obtained C − 1 values.

3 U-Net

Most recent models for medical image segmentation use a U-Net [1] based architec-

ture.

The base U-Net architecture – seen in Figure 1 – consists of an encoder (or

“down”) and a decoder (or “up”) part. Both the encoder and decoder have several

levels. Within one level, the spatial size of the tensor does not change. As is custom

with other convolutional models, between levels all spatial dimensions are halved,

and the channel size is doubled.

The main feature that distinguishes U-Net based networks from older fully con-

nected segmentation nets is the presence of “lateral” residual connections – repre-

sented by red arrows in Figure 1. In the case of the base U-Net architecture, these

concatenate the output of a “down” level to the input of the corresponding “up”

level.

4 U-Net variants

Since the appearance of the original U-Net, there have been a multitude of segmenta-

tion models with similar architectures. Changes range from added skip connections
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Figure 1: Base U-Net architecture

within levels, to wider or deeper architectures, to introducing attention mechanisms

to the lateral residual connections, to fully transformer-based models.

For easier discussion, we have chosen a list of attributes with which any U-Net

based segmentation model can be described.

We describe the models in the following way: it has a certain number of levels,

described by its depth. On every level, there is a number of basic blocks, described

by its width. The basic block is usually two or three layers, but theoretically it could

be arbitrarily large. The input and output of a basic block might be connected by a

skip connection. Between levels, there is a downsampling module in the down path,

and an upsampling module in the up path. Between corresponding levels of the

down and up paths, a “lateral” residual connection carries the information.
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Before the first basic block, there might be an additional stem that performs

preprocessing. After the final basic block, a postprocessing module will transform

the output into the desired shape.

Other variants

Some U-Net variants cannot be described by configuring the above parameters. The

most commonly used among these are U-Nets with other convolutional networks –

e. g. a ResNet50 [2] – as encoders. Unlike the base U-Net encoder, ResNet50 does

not have a constant width across levels. Its bottleneck blocks allow it to have a

higher channel number than a U-Net encoder with the same parameter count.

Moreover, it only has four levels, while the base U-Net encoder has five. To deal

with this, the decoders U-Nets with ResNet50 encoders have one more levels than

their encoder, and their last level does not get a “lateral” residual signal, only the

output of the previous level.

5 Data

The data used for testing was the Synapse multi-organ CT dataset, following [3].

The original dataset consists of 3D CT scan images, complete with segmentation

masks for 13 different organs. As preprocessing, we only keep the masks for eight

organs – aorta, gallbladder, left kidney, right kidney, liver, pancreas, spleen, stomach

–, and we split the original samples into 2D slices. Out of sixteen samples, four were

used for validation, and twelve for training. This resulted in approximately 1800

training records, and 400 validation records.

6 Experiments

6.1 Implementation details

Models were trained on 112× 112 images, using a batch size of 24. The training ran

for 150 epochs. Random rotations and flips were used on the training images. An

SGD optimizer was used, with momentum 0.9 and weight decay 10−4.
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The loss was a Dice index based loss, calculated as

L(y, ŷ) = 1− 1

C

C−1∑
c=0

D(yc, ŷc), D(y, ŷ) =
2yŷ + ε

yy + ŷŷ + ε
,

where L is the Dice loss, yc and ŷc is the c
th channel of the mask and prediction

respectively, D is the soft binary Dice index, and ε is a smoothing term (10−5 in

practice).

All models were variants of the original U-Net, as seen if Figure 1. A stem was

added that was a 3× 3 convolution, transforming the images from 3 to 64 channels.

A softmax layer was applied to the output to obtain classification probabilites.

6.2 Instability

Experiments on the Synapse dataset showed high instability. Randomly initialised

models converged to some constant output most of the time, and only on select

occasions – about 1 out of 5 runs with a basic U-Net, and worse odds for other

architectures – did it start producing sensible results.

6.3 Results

Weight initialisation

weight init acc ↑ AUC ↑ AP ↑ DSC ↑ IoU ↑ HD95 ↓
He (fan out) 0.990 0.969 0.785 0.735 0.619 0.003
He (fan in) 0.990 0.979 0.776 0.731 0.612 0.003
Glorot 0.990 0.976 0.762 0.718 0.601 0.003
orthogonal 0.991 0.976 0.789 0.737 0.614 0.003
pretrained encoder 0.990 0.983 0.817 0.750 0.626 0.004

Table 1: Comparison of different weight initialisation techniques

To try and combat the instability issue, different weight initialisation techniques

were tried. Table 1 shows the results. As seen, the Kaiming He initialisation scheme

in its “fan out” mode is the best random initialisation technique. In most metrics, it

is surpassed if instead of randomly initialised weights, we use an encode pretrained

on Imagenet. (Using a pretrained encoder also helped with the instability issues.)
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Pretraining length
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Figure 2: Accuracy of the U-Net encoder on the test set of Imagenet

Since pretraining on Imagenet [4] produced the most improvement, we experi-

mented more with this approach. We were curious how much the performance of the

pretrained model influenced the final scores. To measure this, we trained a U-Net

encoder on Imagenet, and saved its weights at several checkpoints.

Figure 2 shows the progress of the validation accuracy of the encoder. As can

be seen, the encoder keeps improving over 300 epochs on Imagenet. However, when

used as initial weights, the checkpoints did not produce significantly different results

after the second epoch. Variance testing, and other experiments will need to be

concocted to be more certain, but this suggests that models for medical image

segmentation might only need pretraining on Imagenet for a few hours, isntead of

weeks. (Although we should note that Synapse is a relatively large dataset. We

have not yet investigated whether the same phenomenon holds for smaller datasets

as well.)
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Skip connections

Convolutional networks with skip connections have been successfully used for both

classification and segmentation for a long time. Specifically residual U-Net based

models are widely used. On the Synapse dataset itself, the state of the art Swin U-

Net [3] model uses identity skip connections. For this reason, we have tried different

versions of identity skip connections.

In the down pass, the channel size is doubled within a block. Skip connections

require the input and output of the block to be the same shape. We tried two

possible solutions: filling the missing channels with zeros, and repeating the input

to double its channel size.

In the up pass, we also tried two possible configurations: at the end of the skip

connection, either just add the value coming from the level below, or add both that

and the value coming from the corresponding level in the up path.

However, no combination of these approaches resulted in improved performance;

most models with skip connections introduced proved to be unstable, even when

advanced training techniques, such as layer scaling or stochastic depth were used.

Downsampling and channel change

The final examined architectural feature was the downsampling module of the down

pass. The original U-Net used max pooling for downsampling, and changed the

channel of the input inside the basic block. We tried out to different approaches.

For the first one, we simply replaced the max pooling layer with a 2 × 2 convolu-

tional layer with stride 2. For the second one, we kept the convolutional layer for

downsampling, but we changed the basic block, so it would not change the number

of channels in the input; instead, we let the 2 × 2 convolution used for downsam-

pling change the channel size. This resulted in a significant increase in the number

of trainable parameters.

However, as can be seen in Table 2, neither architecture managed to outperform

the parameterless max pooling downsampling.
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downsampling acc ↑ AUC ↑ AP ↑ DSC ↑ IoU ↑ HD95 ↓
maxpool 0.989 0.981 0.796 0.773 0.659 0.004
conv (channel change) 0.989 0.945 0.710 0.709 0.595 0.005
conv (no channel change) 0.988 0.945 0.710 0.709 0.599 0.004

Table 2: Result of different downsampling techniques

Other models

We also briefly experimented with a ResNet50 based variant. The model was an

Attention U-Net [5], meaning its lateral residual connections did not simply concate-

nate the two signals, but performed an attention gate. Initial experiments produced

worse results than the base U-Net. We plan to do further testing on these models.

Conclusions

We managed to produce results that are similar to those given in [3]. (Our scores

tend to be slightly worse. This, however, can be accounted for by the fact that we

only use part of their training set, as we preserve the other part for validation.)

Figures 3 and 4 show the performance of the best model.

We investigated several architectural changes, but neither of them outperformed

the base U-Net. Since we know that there are better architectures for Synapse – such

as the Swin U-Net –, this suggests that choosing these modules via a line search

is not productive, and that the base U-Net occupies a local optimum within the

hyperparameter space of its attributes.

Figure 3: Example validation image, ground truth mask, and model prediction
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Figure 4: Example confusion matrix

7 Future work

We plan to investigate the effect of different pretraining methods – both on ImageNet

and on domain-specific datasets – on model performance on Synapse, as well as other

medical image datasets.
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