Diffusion Models in Image Segmentation

Milan Szabo

ELTE

March 2023

Milan Szabo (ELTE)

Diffusion Models in Image Segmentation

March 2023

イロト イポト イヨト イヨト

æ

Introduction

- First proposed by Sohl-Dickstein et al. 2015
- Inspired by non-equilibrium statistical physics
- They can achieve remarkable results in generative modelling
- They are highly flexible and tractable
- The research is still in an early phase
- They are now able to beat GANs in sample diversity and quality
- Used by DALL-E 2, Stable Diffusion, Google Imagen and GLIDE

A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

Background: Based on Ho, Jain, and Abbeel 2020

Figure: Diffusion Process from Ho, Jain, and Abbeel 2020

Milan Szabo (ELTE)

Diffusion Models in Image Segmentation

March 2023

< 47 ▶

Background: Foward and Reverse Process

•
$$q(x_t|x_{t-1}) = \mathcal{N}(x_t; \sqrt{1-\beta_t}x_{t-1}, \beta_t I)$$

•
$$q(x_t|x_0) = \mathcal{N}(x_t; \sqrt{\overline{\alpha_t}}x_0, (1-\overline{\alpha_t})I)$$

•
$$\alpha_t = 1 - \beta_t, \overline{\alpha}_t = \prod_{s=1}^t \alpha_t$$

• The reverse process depends on the data distribution, so we have to estimate it.

•
$$p_{\theta}(x_t|x_{t-1}) = \mathcal{N}(x_t; \mu_{\theta}(x_{t-1}, t), \Sigma_{\theta}(x_{t-1}, t))$$

イロト 不得 トイヨト イヨト

э

Background: Model architecture

- U-Net with self-attention between the 16×16 residual bocks.
- Weight normalization is replaced by group normalization.
- *t* is added as the Transformer sinusoidal position embedding to each residual block

A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

Dhariwal and Nichol 2021: Diffusion Models Beat GANs on Image Synthesis

- They use an improved sampling process proposed by Song, Meng, and Ermon 2020
- The reverse steps of DDPMs have to be performed sequentially, which requires large T values.
- Their algorithm turns any $\varepsilon_{\theta}(x_t, x_0)$ model to a deterministic mapping from latents to images.
- Beneficial when the sampling steps are less than 50

イロト イヨト イヨト ・

Dhariwal and Nichol 2021: Architecture Improvements

- Increasing depth versus width, holding model size relatively constant. This increases performance, but also training time.
- 64 channels per attention head
- Using attention at 32×32, 16×16, and 8×8 resolutions rather than only at 16×16
- Using the BigGAN residual block for upsampling and downsampling the activations
- Adaptive Group Normalization: $AdaGN(h, y) = y_sGroupNorm(h) + y_b$, where $y = [y_s, y_b]$ is the linear projection of the time step and class embedding, h is the activation of the residual blocks

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Dhariwal and Nichol 2021: Training the Variance

- Fixing the variance to a constant is not ideal
- New mixed objective
- v is the output of a neural network, $\beta_t, \tilde{\beta}_t$ are as defined before

$$\Sigma_{\theta}(x_t, t) = \exp(v \log \beta_t + (1 - v) \log \tilde{\beta}_t)$$

A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

Dhariwal and Nichol 2021: Classifier Guidance

- Exploit a classifier to improve a diffusion generator
- Train a classifier on noisy images
- Use gradient $\nabla_{x_t} \log p_{\theta}(y|x_t, t)$
- Two stage diffusion models: low-resolution diffusion model, upsampling diffusion model. Both improve FID
- Trade of distribution coverage for sample quality

- ロ ト ・ 同 ト ・ 三 ト ・ 三 ト - -

Dhariwal and Nichol 2021: Results

- Guidance and upsampling improve FID on a different axis
- Guidance trades off sample diversity for quality
- Upsampling improves precision while keeping a high recall
- They achieve the best FIDs by using guidance at a lower resolution before upsampling to a higher resolution
- This way they obtain better sample quality than state-of-the-art GANs

イロト イヨト イヨト ・

Rombach et al. 2022: High Resolution Image Synthesis with Latent Diffusion Models

- Slow inference speed
- High training costs
- Train DM-s in a compressed latent space
- Almost no reduction in synthesis quality
- Improved conditioning mechanism
- Unconditional guidance

< □ > < □ > < □ > < □ >

Rombach et al. 2022: Image compression

- VQ-GAN with the quantization absorbed by the encoder
- Slight regularization towards the standard normal
- Different compression rates
- Keeps the 2D structure of the original image
- Trained on ImageNet

イロト イヨト イヨト ・

Rombach et al. 2022: Results

- They improve the sampling efficiency of diffusion models without degrading their quality
- Diffusion models can be favourable in some scenarios since their previous limitations were their inefficiency.

イロト イヨト イヨト ・

Possible Directions

- Main disadvantage remains having to take multiple steps
- Despite advances in this regard, GANs are still faster.

< ロ > < 同 > < 回 > < 回 > < 回 > <

э

Amit et al. 2021

- SegDiff: Image Segmentation with Diffusion Probabilistic Models
- First to employ diffusion models to image segmentation

イロト イヨト イヨト ・

< □ ▶ < @ ▶ < @ ▶ < @ ▶ < @ ▶ < @ ▶
 March 2023

Amit et al. 2021: Architecture

- G: Conv. layer followed by a Residual in Residual Dense Block with a residual connection around it followed by a conv. layer with leaky RELU and a conv. output layer.
- F: Convolutional layer
- U-Net: $16 \times 16, 8 \times 8$ are followed by a multiheaded attention layer. The bottleneck contains two residual blocks with an attention layer in between. The residual block receives the time embedding through a linear layer.
- They obtain state-of-the-art segmentation results on a wide variety of benchmarks, including street view images, aerial images, and microscopy.

イロト イヨト イヨト ・

Baranchuk et al. 2021

- Label-Efficient Semantic Segmentation with Diffusion Models
- Extract intermediate representations from the 18 U-Net decoder blocks
- An MLP predicts the pixel's semantic label from the features on a specific diffusion step.

Baranchuk et al. 2021

Milan Szabo (ELTE)

Diffusion Models in Image Segmentation

March 2023

イロト 不得 トイヨト イヨト

19/28

Baranchuk et al. 2021

- Train Diffusion model unsupervised
- Train an ensemble of MLPs
- Decide the pixel label by majority voting
- The paper shows that DDPMs can serve as excellent representation learners, the representations are straightforward to compute compared to GANs.
- It requires a trained, high-quality diffusion model for the dataset.
 Which will most likely be available for a wide range of datasets in the near future.

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

Pinaya et al. 2022

- Fast Unsupervised Brain Anomaly Detection and Segmentation with Diffusion Models
- They train a DDPM on the latent space obtained by a VQ-VAE on healthy data
- They use the L_{t-1} to verify the distance of the reverse step and the expected Gaussian transition
- High L_{t-1} values indicate an anomaly

Pinaya et al. 2022

- Calculate the mean L_{t-1} values t-s in the range of [400, 600] for a validation data.
- Use the 97.5 percentile on the validation dataset as a threshold to calculate the latent mask.
- Denoise the masked region and decode with the VQ-VAE.
- To clean areas that the DDPM did not specify as anomalous, they upsample the latent mask, smooth it using a Gaussian filter, and multiply it with the residuals.
- Finally areas with high residual values are identified as anomalous.
- Competitive results with faster inference times.
- DDPM-based methods have the potential to be further improved.

Experiments

- Trained two models on TinyImageNet
- One in latent space
- One in pixel space
- Sampling:
 - 1000 diffusion steps using vanilla sampling
 - 50 and 200 steps using DDIM

イロト イヨト イヨト ・

э

ADM model

- 128-channel UNet
- 2 residual blocks per level
- Attention at resolutions 16 and 8
- Linear noise schedule
- 1000 diffusion steps for the reverse process backpropagating every 250 steps

イロト イヨト イヨト ・

э

LDM model

- Downsampling autoencoder:
 - $64\times 64\times 3$ to $32\times 32\times 4$
 - LPIPS loss with convolutional autoencoder
- Diffusion model:
 - Attention blocks at resolution 8, 16, 32 with 8 heads per block
 - Two residual blocks per level
 - 160 base channels and 1, 2, 4, 4 channel multiplication

Results

Model	Recall	Precision	IS	FID	sFID
ADM,DDIM, 50 steps	0.0	0.0082	1.23	495.88	165.26
ADM,DDIM, 200 steps	0.0	0.0082	1.30	443.75	156.41
ADM,DDPM, 1000 steps	0.149	0.5287	5.42	77.30	35.79
LDM,DDIM, 50 steps	0.3789	0.5723	7.25	55.39	33.15
LDM,DDIM, 200 steps	0.3669	0.5395	7.74	50.14	31.59
LDM,DDPM, 1000 steps	0.3808	0.5315	7.90	49.03	30.99

Table: Sample quality metrics for the trained models

(日)

References I

- Amit, Tomer et al. (2021). "Segdiff: Image segmentation with diffusion probabilistic models". In: arXiv preprint arXiv:2112.00390.
 Baranchuk, Dmitry et al. (2021). "Label-efficient semantic segmentation with diffusion models". In: arXiv preprint arXiv:2112.03126.
- Dhariwal, Prafulla and Alexander Nichol (2021). "Diffusion models beat gans on image synthesis". In: Advances in Neural Information Processing Systems 34, pp. 8780–8794.
- Ho, Jonathan, Ajay Jain, and Pieter Abbeel (2020). "Denoising diffusion probabilistic models". In: Advances in Neural Information Processing Systems 33, pp. 6840–6851.

References II

- Pinaya, Walter HL et al. (2022). "Fast unsupervised brain anomaly detection and segmentation with diffusion models". In: Medical Image Computing and Computer Assisted Intervention-MICCAI 2022: 25th International Conference, Singapore, September 18-22, 2022, Proceedings, Part VIII. Springer, pp. 705-714.
- Rombach, Robin et al. (2022). "High-resolution image synthesis with latent diffusion models". In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10684–10695.
- Sohl-Dickstein, Jascha et al. (2015). "Deep unsupervised learning using nonequilibrium thermodynamics". In: *International Conference on Machine Learning*. PMLR, pp. 2256–2265.
- Song, Jiaming, Chenlin Meng, and Stefano Ermon (2020). "Denoising diffusion implicit models". In: *arXiv preprint arXiv:2010.02502*.

< ロ > < 同 > < 回 > < 回 > < 回 > <