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I. INTRODUCTION

A multi-armed bandit problem is a problem in which a series
of decisions have to be made in order to maximize the expected
reward while having partial knowledge of the usefulness of the
actions. However, by choosing an action, we get information
about the usefulness of that specific action. The multi-armed
bandit problem is one of the most studied problems in decision
theory [1] with many applications including A/B testing,
advert placement and recommendation services [2].

I have investigated a special case of the multi-armed bandit
problem, in which further information about the structure of
the arms is known. I have developed an algorithm that returns
an arm which is close to optimal with high probability.

II. MULTI-ARMED BANDITS

The multi-armed bandit model consists of a set of arms A
(n = |A|) and to every arm a ∈ A belongs a distribution ν(a).
In each round an arm a ∈ A is chosen and a reward R(a) is
sampled from distribution ν(a). An arm is called optimal, if it
has the highest expected reward among all of the arms. There
can be multiple optimal arms, their expected reward is denoted
by r∗.

Definition 1. An arm a ∈ A is called ε-optimal if

E[R(a)] ≥ r∗ − ε.

One of the most common learning objectives is to find an
ε-optimal arm with high probability.

Definition 2. An algorithm is called an (ε, δ)-PAC (probably
approximately correct) algorithm for the multi-armed bandit
problem with sample complexity T , if it outputs an ε-optimal
arm with probability at least 1 − δ when it terminates, and
the number of steps the algorithm performs until termination
is bounded by T .

An (ε, δ)-PAC algorithm is known for the case of binary
rewards, called Median Elimination [3].

Statement 1. The Median Elimination algorithm is an (ε, δ)-
PAC algorithm and its sample complexity is

O
(

n

ε2
log

1

δ

)
.

In [4] an O
(
(n/ε2) log(1/δ)

)
lower bound is provided on

the expected number of trials under any policy that finds an
ε-optimal arm with probability at least 1− δ.

Algorithm 1 Median Elimination
Input: ε > 0, δ > 0
Output: an arm which is ε-optimal with probability at least
1− δ
Set S1 = A, ε1 = ε/4, δ1 = δ/2, ℓ = 1.
repeat

Sample every arm a ∈ Sℓ for 1/(εℓ/2)2 log(3/δℓ) times,
and let p̂ℓa denote its empirical value
Find the median of p̂ℓa, denoted by mℓ

Sℓ+1 = Sℓ \ {a : p̂ℓa < mℓ}
εℓ+1 = 3

4εℓ, δℓ+1 = δℓ/2, ℓ = ℓ+ 1
until |Sℓ| = 1

III. SUBGAUSSIAN RANDOM VARIABLES

More information about subgaussian random variables and
the proof of Statement 2 can be found in [2].

Definition 3. A random variable X is σ-subgaussian if for
all λ ∈ R :

E[exp(λX)] ≤ exp(λ2σ2/2).

Statement 2. Assume that Xi − µ are independent, σ-
subgaussian random variables. Then for any ε > 0,

P(µ̂ ≥ µ+ ε) ≤ exp

(
−nε2

2σ2

)
,

P(µ̂ ≤ µ− ε) ≤ exp

(
−nε2

2σ2

)
where µ̂ = 1

n

∑n
i=1 Xi.

Remark 1. For random variables that are not centred
(E[X] ̸= 0), the notation is abused by saying that X is
σ-subgaussian if the noise X − E[X] is σ-subgaussian. A
distribution is called σ-subgaussian if a random variable
drawn from that distribution is σ-subgaussian.

IV. ARMS WITH A SPECIAL STRUCTURE

In the previous semester I have investigated a special case
of the multi-armed bandit problem, in which we have further
knowledge of the structure of the arms. This special case of
the multi-armed bandit problem also arises in practice, for
example the quantized estimation problem studied in [5] leads
to a bandit problem of this kind.

In this case the assumptions on the arms are the following:
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Assumption 1. There are n = 2m+1, m ≥ 1 arms numbered
from 0 to 2m: a0, a1, ..., a2m .
(The expectation of arm ai will be denoted by µi.)

Assumption 2. There exists a k ∈ {0, 1, ..., 2m} such that

µ0 < µ1 < ... < µk−1 < µk > µk+1 > µk+2 > ... > µ2m .

Assumption 3. There exists a ∆ > 0 such that

|µi+1 − µi| ≥ ∆ ∀ i ∈ {0, 1, ..., 2m − 1},

and it is known in advance.

Assumption 4. The arms are 1-subgaussian.

Algorithm 2
Input: δ > 0
Output: an arm which is optimal with probability at least
1− δ
Set S1 = A, δ1 = δ/2, ℓ = 1.
while |Sℓ| > 3 do

Sample the three arms: aj , j ∈ {i · 2m−ℓ−1, i = 1, 2, 3}
nℓ = ⌈log(4/δℓ)/(22m−2ℓ−5∆2)⌉ times each, and let µ̂ℓ

j

denote their empirical values
i∗ℓ = argmaxj µ̂

ℓ
j

Sℓ+1 =
{
ai : i

∗
ℓ − 2m−ℓ−1 ≤ i ≤ i∗ℓ + 2m−ℓ−1

}
Renumber the arms from 0 to 2m−ℓ

δℓ+1 = δℓ/2, ℓ = ℓ+ 1
end while
Sample each of the three remaining arms aj , j ∈ {0, 1, 2}
nm = ⌈log(4/δm)/(2−3∆2)⌉ times, and let µ̂m

j denote their
empirical values
i∗m = argmaxj µ̂

m
j

return ai∗m

Theorem 1. Under Assumptions 1-4, Algorithm 2 finds the
optimal arm with probability at least 1 − δ and its sample
complexity is

O
(
log n+

1

∆2
log

n

δ

)
.

Remark 2. In the general case when 2m−1+1 < n ≤ 2m+1
we can do the following:
At first update the indices:

i←− i+

⌊
2m + 1− n

2

⌋
.

This way we can sample the arms

aj , j ∈ {i · 2m−2, i = 1, 2, 3}.

Sample all of them n1 = ⌈log(8/δ)/(22m−7∆2)⌉ times. Let
µ̂1
j denote their empirical values and let i∗1 = argmaxj µ̂

1
j .

Keep the 2m−1 + 1 arms closest to the arm ai∗1 , the set of
these arms will be S2. Renumber the arms from 0 to 2m−1.
Set δ2 = δ/4 and ℓ = 2. After that we can continue with the
second round of Algorithm 2.

V. INFINITELY MANY ARMS WITH A CONCAVE
STRUCTURE IN 1D

In this semester I have considered the problem in which the
arms are the elements of the [0, 1] interval and an unknown
concave function describes the expectations of the arms. The
assumptions are the following:

Assumption 5. The arms are the elements of the [0, 1]
interval and the expectation of arm a ∈ [0, 1] is f(a), where
f : [0, 1]→ R is an unknown concave function.

Assumption 6. The arms are 1-subgaussian.

Algorithm 3
Input: δ > 0, ε > 0
Output: an arm which is ε optimal with probability at least
1− δ
Set δ0 = δ/2,
x1
0 = 0, x1

1 = 0.25, x1
2 = 0.5, x1

3 = 0.75, x1
4 = 1.

Sample n0 = ⌈128 log(4/δ0)/ε2⌉ times the two arms:
x1
0 and x1

4. Let µ̂1
0 and µ̂1

4 denote the sample means and
µ1
0, µ

1
4 denote the corresponding expectations.

Set S1 = [0, 1], δ1 = δ0/2, ℓ = 1.
while TRUE do

Sℓ+1 = Sℓ.
Sample nℓ = ⌈128 log(6/δℓ)/ε2⌉ times the three arms:
xℓ
1, x

ℓ
2, x

ℓ
3. Let µ̂ℓ

1, µ̂
ℓ
2, µ̂

ℓ
3 denote the sample means and

µℓ
1, µ

ℓ
2, µ

ℓ
3 denote the expectations.

if µ̂ℓ
1, µ̂

ℓ
3 ∈ (µ̂ℓ

2 − ε/4, µ̂ℓ
2 + ε/4) then

return xℓ
2

end if
if µ̂ℓ

1 ≥ µ̂ℓ
2 + ε/4 then

Sℓ+1 = Sℓ+1 \ (xℓ
2, x

ℓ
4]

else if µ̂ℓ
1 ≤ µ̂ℓ

2 − ε/4 then
Sℓ+1 = Sℓ+1 \ [xℓ

0, x
ℓ
1)

end if
if µ̂ℓ

3 ≥ µ̂ℓ
2 + ε/4 then

Sℓ+1 = Sℓ+1 \ [xℓ
0, x

ℓ
2)

else if µ̂ℓ
3 ≤ µ̂ℓ

2 − ε/4 then
Sℓ+1 = Sℓ+1 \ (xℓ

3, x
ℓ
4]

end if
xℓ+1
0 = minSℓ+1, x

ℓ+1
4 = maxSℓ+1,

xℓ+1
1 = 3

4 · x
ℓ+1
0 + 1

4 · x
ℓ+1
4 ,

xℓ+1
2 = 1

2 · x
ℓ+1
0 + 1

2 · x
ℓ+1
4 ,

xℓ+1
3 = 1

4 · x
ℓ+1
0 + 3

4 · x
ℓ+1
4 .

Let µ̂ℓ+1
0 and µ̂ℓ+1

4 denote the sample means of xℓ+1
0 and

xℓ+1
4 calculated in round ℓ, and let µℓ+1

0 and µℓ+1
4 denote

the the expectations of xℓ+1
0 and xℓ+1

4 .
δℓ+1 = δℓ/2, ℓ = ℓ+ 1

end while

In each round of Algorithm 3 the set of arms is reduced or
the algorithm terminates. In round ℓ the set of arms is denoted
by Sℓ, which is divided into four subsets with equal size by
five arms: xℓ

0, x
ℓ
1, x

ℓ
2, x

ℓ
3, x

ℓ
4. The expectation of arm xℓ

i is
denoted by µℓ

i . In round ℓ we have estimation of µℓ
0 and µℓ

4

from the previous round. We want to estimate µℓ
1, µ

ℓ
2 and µℓ

3

as well, so we sample xℓ
1, x

ℓ
2, x

ℓ
3 many times and we estimate
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the expectations with the sample means. The estimation of
the expectation of arm xℓ

i is denoted by µ̂ℓ
i . If µ̂ℓ

1 and µ̂ℓ
3 are

close to µ̂ℓ
2, then the arm xℓ

2 will be close-to-optimal because
of the concavity and the algorithm returns xℓ

2. If µ̂ℓ
1 is much

bigger than µ̂ℓ
2, then µℓ

1 ≥ µℓ
2 and because of the concavity,

the optimal arm cannot be on the right of arm xℓ
2 and we

can remove these arms. If µ̂ℓ
1 is much smaller than µ̂ℓ

2, then
µℓ
1 ≤ µℓ

2 and because of the concavity, the optimal arm cannot
be on the right of arm xℓ

1 and we can remove these arms.
Similarly, if µ̂ℓ

3 is much smaller or bigger than µ̂ℓ
2, we can

also remove arms.

Theorem 2. Under Assumptions 5-6, Algorithm 3 finds an
ε-optimal arm with probability at least 1− δ.

Lemma 1.

P(∃ℓ, ∃i ∈ {1, 2, 3} : |µ̂ℓ
i − µℓ

i | ≥ ε/8) ≤ δ/2,

and

P(|µ̂1
0 − µ1

0| ≥ ε/8 ∨ |µ̂1
4 − µ1

4| ≥ ε/8) ≤ δ/2.

Proof. For every phase ℓ ≥ 1:

P(∃i ∈ {1, 2, 3} : |µ̂ℓ
i − µℓ

i | ≥ ε/8)

≤
3∑

i=1

P(|µ̂ℓ
i − µℓ

i | ≥ ε/8)

≤ 3 · 2 exp
(
−nℓ · (ε/8)2/2

)
≤ δℓ.

P(∃ℓ, ∃i ∈ {1, 2, 3} : |µ̂ℓ
i − µℓ

i | ≥ ε/8)

≤
∞∑
ℓ=1

P(∃i ∈ {1, 2, 3} : |µ̂ℓ
i − µℓ

i | ≥ ε/8)

≤
∞∑
ℓ=1

δℓ = δ/2.

P(|µ̂1
0 − µ1

0| ≥ ε/8 ∨ |µ̂4
0 − µ4

0| ≥ ε/8)

≤ P(|µ̂1
0 − µ1

0| ≥ ε/8) + P(|µ̂4
0 − µ4

0| ≥ ε/8)

≤ 2 · 2 exp
(
−n0 · (ε/8)2/2

)
≤ δ0 = δ/2.

Lemma 2. Suppose that |µ̂ℓ
i − µℓ

i | ≤ ε/8, i = 0, 1, 2, 3, 4.
Let x∗ denote the optimal arm. If i < j and µ̂ℓ

i ≥ µ̂ℓ
j + ε/4

then x∗ ≤ xℓ
j . Similarly, if i > j and µ̂ℓ

i ≥ µ̂ℓ
j + ε/4 then

x∗ ≥ xℓ
j .

Proof. If µ̂ℓ
i ≥ µ̂ℓ

j + ε/4 then µℓ
i ≥ µℓ

j :

µℓ
i ≥ µ̂ℓ

i − ε/8

≥ µ̂ℓ
j + ε/4− ε/8

= µ̂ℓ
j + ε/8

≥ µℓ
j .

Arguing indirectly, assume that x∗ > xℓ
j . Then there exists a

t ∈ [0, 1] such that xℓ
j = t · xℓ

i + (1 − t) · x∗. Because of the
concavity:

f(xℓ
j) = f(t·xℓ

i+(1−t)·x∗) ≥ t·f(xℓ
i)+(1−t)·f(x∗) > f(xℓ

i).

It contradicts the fact that µℓ
i ≥ µℓ

j .
The other case can be proven similarly.

Lemma 3. Suppose that |µ̂ℓ
i − µℓ

i | ≤ ε/8, i = 0, 1, 2, 3, 4.
If µ̂ℓ

i−1, µ̂
ℓ
i+1 ∈ (µ̂ℓ

i − ε/4, µ̂ℓ
i + ε/4), then

µℓ
i−1, µ

ℓ
i+1 ∈ [µℓ

i − ε/2, µℓ
i + ε/2].

Proof.

µℓ
i−1 ≥ µ̂ℓ

i−1 − ε/8

≥ µ̂ℓ
i − ε/4− ε/8

= µ̂ℓ
i − 3/8 · ε

≥ µℓ
i − ε/8− 3/8 · ε

= µℓ
i − ε/2.

µℓ
i−1 ≤ µ̂ℓ

i−1 + ε/8

≤ µ̂ℓ
i + ε/4 + ε/8

= µ̂ℓ
i + 3/8 · ε

≤ µℓ
i + ε/8 + 3/8 · ε

= µℓ
i + ε/2.

Similarly, µℓ
i+1 ∈ [µℓ

i − ε/2, µℓ
i + ε/2].

Lemma 4. Suppose that |µ̂ℓ
i − µℓ

i | ≤ ε/8, i = 1, 2, 3.
If µ̂ℓ

1, µ̂
ℓ
3 ∈ (µ̂ℓ

2−ε/4, µ̂ℓ
2+ε/4), then µℓ

2 ≥ maxx∈Sℓ
f(x)−ε.

Proof. Let x∗ = argmaxx∈Sℓ
f(x). Arguing indirectly as-

sume, that f(x∗) > f(xℓ
2) + ε.

If x∗ < xℓ
1, then there exists a t ∈ [0, 1] such that

xℓ
1 = (1− t) · x∗ + t · xℓ

2.

As xℓ
1 is closer to x∗ than to xℓ

2, t ≤ 1/2. Because of the
concavity:

f(xℓ
1) = f((1− t) · x∗ + t · xℓ

2)

≥ (1− t) · f(x∗) + t · f(xℓ
2)

> (1− t) · (f(xℓ
2) + ε) + t · f(xℓ

2)

= f(xℓ
2) + (1− t) · ε

≥ f(xℓ
2) + ε/2.

It contradicts the fact that f(xℓ
1) ≤ f(xℓ

2) + ε/2.

If xℓ
1 < x∗ < xℓ

2, then there exists a t ∈ [0, 1] such that
xℓ
2 = (1 − t) · x∗ + t · xℓ

3. As xℓ
2 is closer to x∗ than to xℓ

3,
t ≤ 1/2. Because of the concavity:

f(xℓ
2) = f((1− t) · x∗ + t · xℓ

3)

≥ (1− t) · f(x∗) + t · f(xℓ
3)

> (1− t) · (f(xℓ
2) + ε) + t · (f(xℓ

2)− ε/2)

= f(xℓ
2) + (1− 3/2 · t) · ε

> f(xℓ
2).
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It is a contradiction.

If xℓ
2 < x∗ < xℓ

3, then there exists a t ∈ [0, 1] such that
xℓ
2 = (1 − t) · xℓ

1 + t · x∗. As xℓ
2 is closer to x∗ than to xℓ

1,
1 > t ≥ 1/2. Because of the concavity:

f(xℓ
2) = f((1− t) · xℓ

1 + t · x∗)

≥ (1− t) · f(xℓ
1) + t · f(x∗)

> (1− t) · (f(xℓ
2)− ε/2) + t · (f(xℓ

2) + ε)

= f(xℓ
2) + (3/2 · t− 1/2) · ε

> f(xℓ
2).

It is a contradiction.

If xℓ
3 < x∗, then there exists a t ∈ [0, 1] such that

xℓ
3 = (1− t) · xℓ

2 + t · x∗.

As xℓ
3 is closer to x∗ than to xℓ

2, t ≥ 1/2. Because of the
concavity:

f(xℓ
3) = f((1− t) · xℓ

2 + t · x∗)

≥ (1− t) · f(xℓ
2) + t · f(x∗)

> (1− t) · f(xℓ
2) + t · (f(xℓ

2) + ε)

= f(xℓ
2) + t · ε

≥ f(xℓ
2) + ε/2.

It contradicts the fact that f(xℓ
3) ≤ f(xℓ

2) + ε/2.

By Lemma 1,

P(∃ℓ, ∃i ∈ {0, 1, 2, 3, 4} : |µ̂ℓ
i − µℓ

i | ≥ ε/8) ≤ δ.

Now consider the case, when

∀ℓ, ∀i ∈ {0, 1, 2, 3, 4} : |µ̂ℓ
i − µℓ

i | ≤ ε/8.

In each round at least a quarter of the arms are removed or the
algorithm terminates. By Lemma 2 the optimal arm is never
thrown away and by lemma 4 an ε-optimal arm is returned
when the algorithm terminates. This way Algorithm 3 returns
an ε-optimal arm with probability at least 1− δ.

VI. CONCLUSION

I have investigated a special case of the multi-armed bandit
problem, in which the arms are the elements of the [0, 1]
interval and a concave function describes the expectations
of the arms. I have developed an algorithm, that finds an ε-
optimal arm with probability at least 1− δ in this case.

There are still many interesting problems that require further
investigation including the case of infinitely many arms with
a concave structure in higher-dimensional spaces.
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