Stochastic Recursive Optimization: A Structured Multi-Armed Bandit Problem

Roland Szögi
Supervisor: Balázs Csanád Csáji

Multi-Armed Bandits

- The multi-armed bandit model consists of a set of arms \mathcal{A}.
- To every arm $a \in \mathcal{A}$ belongs a distribution $\nu(a)$.
- In each round an arm $a \in \mathcal{A}$ is chosen and a reward $R(a)$ is sampled from distribution $\nu(a)$.
- An arm is called optimal, if it has the highest expected reward among all of the arms.
- The goal is to find an ε-optimal arm.

Definition 1.1

An arm $a \in \mathcal{A}$ is called ε-optimal if

$$
\mathbb{E}[R(a)] \geq r^{*}-\varepsilon
$$

where r^{*} denotes the expectation of the optimal arm.

FURTHER ASSUMPTIONS

1. The arms are the points of the $[0,1]$ interval and the expectation of arm $a \in[0,1]$ is $f(a)$, where $f:[0,1] \rightarrow \mathbb{R}$ is an unknown concave function.
2. The arms are 1-subgaussian.

Definition 2.1

A random variable X is σ-subgaussian if for all $\lambda \in \mathbb{R}$:

$$
\mathbb{E}[\exp (\lambda X)] \leq \exp \left(\lambda^{2} \sigma^{2} / 2\right)
$$

Statement 1

Assume that $X_{i}-\mu$ are independent, σ-subgaussian random variables. Then for any $\varepsilon>0$,

$$
\begin{aligned}
& \mathbb{P}(\hat{\mu} \geq \mu+\varepsilon) \leq \exp \left(-\frac{n \varepsilon^{2}}{2 \sigma^{2}}\right) \\
& \mathbb{P}(\hat{\mu} \leq \mu-\varepsilon) \leq \exp \left(-\frac{n \varepsilon^{2}}{2 \sigma^{2}}\right)
\end{aligned}
$$

where $\hat{\mu}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$.

Algorithm

```
Input: \(\delta>0, \varepsilon>0\)
Output: an arm which is \(\varepsilon\) optimal with probability at least \(1-\delta\)
    Set \(\ell=1, \delta_{1}=\delta / 2, S_{1}=[0,1], x_{0}^{1}=0, x_{1}^{1}=0.25, x_{2}^{1}=0.5, x_{3}^{1}=0.75, x_{4}^{1}=1\).
    while TRUE do
        \(S_{\ell+1}=S_{\ell}\).
        Sample \(n_{\ell}=\left\lceil 128 \log \left(6 / \delta_{\ell}\right) / \varepsilon^{2}\right\rceil\) times the three arms: \(x_{1}^{\ell}, x_{2}^{\ell}, x_{3}^{\ell}\).
        Let \(\hat{\mu}_{1}^{\ell}, \hat{\mu}_{2}^{\ell}, \hat{\mu}_{3}^{\ell}\) denote the sample means and \(\mu_{1}^{\ell}, \mu_{2}^{\ell}, \mu_{3}^{\ell}\) denote the expectations.
        if \(\hat{\mu}_{1}^{\ell}, \hat{\mu}_{3}^{\ell} \in\left(\hat{\mu}_{2}^{\ell}-\varepsilon / 4, \hat{\mu}_{2}^{\ell}+\varepsilon / 4\right)\) then return \(x_{2}^{\ell}\).
        if \(\hat{\mu}_{1}^{\ell} \geq \hat{\mu}_{2}^{\ell}+\varepsilon / 4\) then \(S_{\ell+1}=S_{\ell+1} \backslash\left(x_{2}^{\ell}, x_{4}^{\ell}\right]\).
        if \(\hat{\mu}_{1}^{\ell} \leq \hat{\mu}_{2}^{\ell}-\varepsilon / 4\) then \(S_{\ell+1}=S_{\ell+1} \backslash\left[x_{0}^{\ell}, x_{1}^{\ell}\right)\).
        if \(\hat{\mu}_{3}^{\ell} \geq \hat{\mu}_{2}^{\ell}+\varepsilon / 4\) then \(S_{\ell+1}=S_{\ell+1} \backslash\left[x_{0}^{\ell}, x_{2}^{\ell}\right)\).
        if \(\hat{\mu}_{3}^{\ell} \leq \hat{\mu}_{2}^{\ell}-\varepsilon / 4\) then \(S_{\ell+1}=S_{\ell+1} \backslash\left(x_{3}^{\ell}, x_{4}^{\ell}\right]\).
        \(x_{0}^{\ell+1}=\min S_{\ell+1}, x_{4}^{\ell+1}=\max S_{\ell+1}\),
        \(x_{1}^{\ell+1}=\frac{3}{4} \cdot x_{0}^{\ell+1}+\frac{1}{4} \cdot x_{4}^{\ell+1}, x_{2}^{\ell+1}=\frac{1}{2} \cdot x_{0}^{\ell+1}+\frac{1}{2} \cdot x_{4}^{\ell+1}, x_{3}^{\ell+1}=\frac{1}{4} \cdot x_{0}^{\ell+1}+\frac{3}{4} \cdot x_{4}^{\ell+1}\).
        \(\delta_{\ell+1}=\delta_{\ell} / 2, \ell=\ell+1\)
    end while
```


Thank You For Your Attention!

