STOCHASTIC RECURSIVE OPTIMIZATION: A Structured Multi-Armed Bandit Problem

Roland Szögi Supervisor: Balázs Csanád Csáji

Multi-Armed Bandits

- ► The multi-armed bandit model consists of a set of arms *A*.
- To every arm $a \in \mathcal{A}$ belongs a distribution $\nu(a)$.
- ▶ In each round an arm $a \in A$ is chosen and a reward R(a) is sampled from distribution $\nu(a)$.
- An arm is called optimal, if it has the highest expected reward among all of the arms.
- The goal is to find an ε -optimal arm.

Definition 1.1

An arm $a \in A$ is called ε -optimal if

 $\mathbb{E}[R(a)] \ge r^* - \varepsilon,$

where r^* denotes the expectation of the optimal arm.

FURTHER ASSUMPTIONS

- 1. The arms are the points of the [0, 1] interval and the expectation of arm $a \in [0, 1]$ is f(a), where $f : [0, 1] \to \mathbb{R}$ is an unknown concave function.
- 2. The arms are 1-subgaussian.

Definition 2.1

A random variable X is σ *-subgaussian if for all* $\lambda \in \mathbb{R}$:

 $\mathbb{E}[\exp(\lambda X)] \le \exp(\lambda^2 \sigma^2/2).$

Statement 1

Assume that $X_i - \mu$ are independent, σ -subgaussian random variables. Then for any $\varepsilon > 0$,

$$\begin{split} \mathbb{P}(\hat{\mu} \geq \mu + \varepsilon) &\leq \exp\left(-\frac{n\varepsilon^2}{2\sigma^2}\right), \\ \mathbb{P}(\hat{\mu} \leq \mu - \varepsilon) &\leq \exp\left(-\frac{n\varepsilon^2}{2\sigma^2}\right) \end{split}$$

where $\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} X_i$.

Algorithm

Input: $\delta > 0, \varepsilon > 0$ **Output:** an arm which is ε optimal with probability at least $1 - \delta$ Set $\ell = 1$, $\delta_1 = \delta/2$, $S_1 = [0, 1]$, $x_0^1 = 0$, $x_1^1 = 0.25$, $x_2^1 = 0.5$, $x_3^1 = 0.75$, $x_4^1 = 1$. 1. while TRUE do 2: $S_{\ell+1} = S_{\ell}$. 3: Sample $n_{\ell} = \lceil 128 \log(6/\delta_{\ell})/\varepsilon^2 \rceil$ times the three arms: $x_1^{\ell}, x_2^{\ell}, x_3^{\ell}$. Let $\hat{\mu}_1^{\ell}, \hat{\mu}_2^{\ell}, \hat{\mu}_3^{\ell}$ denote the sample means and $\mu_1^{\ell}, \mu_2^{\ell}, \mu_3^{\ell}$ denote the expectations. if $\hat{\mu}_1^{\ell}, \hat{\mu}_2^{\ell} \in (\hat{\mu}_2^{\ell} - \varepsilon/4, \hat{\mu}_2^{\ell} + \varepsilon/4)$ then return x_2^{ℓ} . if $\hat{\mu}_{1}^{\ell} > \hat{\mu}_{2}^{\ell} + \varepsilon/4$ then $S_{\ell+1} = S_{\ell+1} \setminus (x_{2}^{\ell}, x_{4}^{\ell}]$. if $\hat{\mu}_1^{\overline{\ell}} < \hat{\mu}_2^{\overline{\ell}} - \varepsilon/4$ then $S_{\ell+1} = S_{\ell+1} \setminus [x_0^{\overline{\ell}}, x_1^{\overline{\ell}}]$. if $\hat{\mu}_3^{\ell} \geq \hat{\mu}_2^{\ell} + \varepsilon/4$ then $S_{\ell+1} = S_{\ell+1} \setminus [x_0^{\ell}, x_2^{\ell})$. if $\hat{\mu}_3^{\ell} \leq \hat{\mu}_2^{\ell} - \varepsilon/4$ then $S_{\ell+1} = S_{\ell+1} \setminus (x_3^{\ell}, x_4^{\ell}]$. 4: $x_0^{\ell+1} = \min S_{\ell+1}, x_4^{\ell+1} = \max S_{\ell+1},$ $x_{1}^{\ell+1} = \frac{3}{4} \cdot x_{0}^{\ell+1} + \frac{1}{4} \cdot x_{4}^{\ell+1}, \ x_{2}^{\ell+1} = \frac{1}{2} \cdot x_{0}^{\ell+1} + \frac{1}{2} \cdot x_{4}^{\ell+1}, \ x_{3}^{\ell+1} = \frac{1}{4} \cdot x_{0}^{\ell+1} + \frac{3}{4} \cdot x_{4}^{\ell+1}.$ 5: $\delta_{\ell+1} = \delta_{\ell}/2, \ \ell = \ell + 1$ 6: end while

Thank You For Your Attention!