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Introduction

The field of Evolutionary Equations on Metric Graphs has been studied since the first decades of the
20th century and receiving more attention recently thanks to their usefulness in many new interesting
problems in Theoretical Physics, biology, and engineering. For example, such graphs arise naturally
when considering the propagation of the heat through a quasi-one-dimensional system that locally
looks like a graph. This field of study is also called Dynamics on Networks or one-dimensional ramified
spaces or known in some communities of theoretical physics as quantum graphs. Working in this field
and its applications brings together many nice tools and ideas from various branches such as graph
theory, PDEs, mathematical physics, and many other areas depending on the type of problem.
Some of the studies that have been worked on in this area are related to the structure of the graph
and the type of boundary conditions of PDEs which have physical interpretations. For example, in [7]
and [8], there are results concerning the well-posedness of some types of 2nd-order PDEs with non-
local Kirchhoff-type conditions on compact graphs, where in both papers they used similar functional
analysis tools to study the well-posedness of such PDEs on Networks. While in [3], they treated 2nd
order PDEs in a much more general setting, which includes very general types of boundary conditions
and they even considered non-compact graphs as well. The contrast between the first two papers
and the third one is that the methods they used to prove the well-posedness are different. Therefore
the aim of this project is to use a similar method as [7] and [8]to prove the well-posedness of the
Heat Equation on a non-compact graph with the same type of boundary conditions that were treated
in this paper [5], and also to equivalently prove the well-posedness by showing that these boundary
conditions can be reformulated to fit in the framework considered in [3] and use directly its well-
posedness result
In this report, we will introduce in the first chapter, the main notions, and necessary background
from graph theory, semigroup theory, and some functional analysis. In the second chapter, we will
introduce the framework that we will work with and prove the well-posedness using the two different
methods mentioned earlier.
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1

Background and Terminology

1.1 Some Graph Theory

Types of Graphs:
A Graph G consisting of a finite or countably infinite set of vertices V={vl}, a set E={el} of edges
and a mapping ϕ from E to VxV, called the incidence mapping associated with G is said to be:
Simple: if it contains no loops and no multiple edges.
Directed: if ϕ(e) = (v, w) is an ordered pair where e ∈ E and v, w ∈ V; we say e is a directed edge
from its tail v to its head w.
Metric: If each directed edge e is assigned a positive length Le ∈ [0,∞) and parameterized on [0, Le]

i.e., xe(s) ∈ e for s ∈ [0, Le] and if ϕ(e) = (v, w) then xe(0) = v and xe(Le) = w. The lengths of
each directed edge that are reversal to each other are assumed to be equal. For the sake of notation
simplicity, we denote xe(s) , xe(0) and xe(Le) by e(s), e(0) and e(Le) respectively.
A Metric Graph G is said to be Equilateral: if all the edges are assigned the same positive length.
Normalized: if G is Equilateral and Le = 1 for all edges. Finite: if the number of edges and
vertices is finite. Non-Compact: if some edges have infinite length i.e parameterized on [0,∞),
they are called leads and they are incident to only one vertex.

We consider such metric graphs because their structure in taking the union of all edges en-
ables us to think about it as a topological space, in this way we would have the original vertices
that are useful in identifying certain relations between the edges but also additional intermediate
points on the edges which are helpful because, this way, we can consider functions on each edge or
by taking a vector-valued function we can define such function on the whole graph more specifically
on the topological space induced from it. ( More details about Metric graphs can be found [10],[1]).

Incidence Matrices:
Let G=(V,E,ϕ) be a Finite-Equilateral-Normalized-Metric Graph (Abbreviation:(FENM)) such that
V={vi}i=1,n and E={ej}j=1,m where n,m ∈ N, as mentioned before ϕ describes the incidence
relations between the vertices and edges, such mapping induces two matrices Φ+=(ϕ+

ij)n×m and
Φ−=(ϕ−

ij)n×m, each describes in the incidence relation in the following way:

4



ϕ+
ij :=

 1, if ej(0) = vi,

0, otherwise
and ϕ−

ij :=

1, if ej(1) = vi,

0, otherwise

Here Φ+ and Φ− are called the outgoing and incoming incidence matrix respectively, accordingly, we
call ej an outgoing edge for vi if ϕ+

ij = 1 and incoming edge for vi if ϕ−
ij = 1.

1.2 Semigroup Operator Theory and some Functional Analysis

1.2.1 Some functional analysis reminder:

Definition 1.2.1.1 : ([2] , Chapter 1,Definition 6.1) If (H1, ⟨., .⟩H1) and (H2, ⟨., .⟩H2) are two Hilbert
spaces, then the product of H1 ×H2 is also a Hilbert space with

⟨., .⟩H1×H2
= ⟨., .⟩H1

+ ⟨., .⟩H2

Definition 1.2.1.2 : ([4] , Definition 3.13) A linear operator (A,D(A)) on a Banach space X is
called dissipative if

∥(λ−A)x)∥ ≥ λ∥x∥ for all λ ≥ 0, x ∈ D(A)

Proposition 1.2.1.3 : ([2] , Chapter 10,Proposition 1.6 ) If A is a densely defined operator then
the adjoint of A is a closed operator.

1.2.2 Background on Semigroup theory:

Definitions 1.2.2.1 : ([4],Chapter 1 and 2)
C0 − Semigroup: Let (T (t))t≥0 be a family of bounded linear operators on a Banach space X. We
call (T (t))t≥0 a strongly continuous semigroup if :

T (t+ s) = T (t)T (s) ∀t, s ≥ 0; T (0) = Id; ∀x ∈ X t 7→ T (t)x ∈ X is continuous

Generator: The generator A : D(A) ⊆ X → X of a C0 − Semigroup (T (t))t≥0 on X is the operator
defined by: {

Ax := limh→0
1
h (T (t)x− x)

D(A) := {x ∈ X : Ax exist}

Theorem 1.2.2.2, Well-posedness for evolutionary equations : ([4], Chapter 2, Corollary
6.8) For a closed operator A : D(A) ⊂ X → X, the associated (ACP) is well-posed if and only if A
generates a C0-semigroup on X

1.2.3 Semigroups, sesquilinear forms, and operators:

Definitions 1.2.3.1 On sesquilinear forms: ([9],Chapter1)
Let H be a Hilbert space over C. Let ⟨., .⟩H and ∥x∥H denote the inner product and the corresponding
norm respectively of H. An application a from D(a)×D(a) into C, where D(a) is the domain of a and
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a linear subspace of H;is called a sesquilinear form if for every α ∈ C and u, v, h ∈ H it satisfies the
following property:

a(αu+ v, h) = αa(u, h) + a(v, h) and a(u, αv + h) = ᾱa(u, v) + a(u, h)

Here ᾱ is the conjugate of α. if H is over R then the form is bilinear. We say that a is Densly
Defined: if D(a) is dense in H. Accretive: if Real part of a(u, u) denoted Ra(u, u) is non-negative
∀u ∈D(a).Continuous: if there exist a non-negative constant M such that |a(u, v)| ≤ M∥u∥a∥v∥a
∀u, v ∈ D(a), where ∥u∥2a = Ra(u, v) + ∥u∥2H .Closed:if ∥u∥a is complete in D(a).

Associated operator with a sesquilinear form:([9],Chapter1)
Definition 1.2.3.2 :
The operator A associated with a sesquilinear form a with domain D(a) on a Hilbert space H is
defined as follows:{

D(A) := {u ∈ D(a) : ∃v ∈ H such that : a(u, ϕ) = ⟨v, ϕ⟩H ∀ϕ ∈ D(a)}
Au := v

Proposition 1.2.3.3 ([9], Proposition 1.22) If a bilinear form is densely defined, accretive, contin-
uous, and closed on a Hilbert space H, and A is the operator associated with it. Then A is densly
defined, and ∀λ ≥ 0, the operator (λ + A) is invertible and it’s inverse (λ + A)−1 is bounded and
∥λ(λ+A)−1f∥ ≤ ∥f∥ for all λ ≥ 0, f ∈ H

Remark: If A =: −B, i.e the operator A is the negative of some operator B, then substituting B in
the previous proposition would result in B being dissipative.
Proposition 1.2.3.4 : ([9], Proposition 1.24) If a sesquilinear form is symmetric then the operator
associated with it is self-adjoint.
Proposition 1.2.3.5 :([9], Proposition 1.51) If a bilinear form is densely defined, accretive, contin-
uous, and closed on a Hilbert space H, and A is the operator associated with it. Then the operator
−A is the generator of a C0-contraction-semigroup on H.
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2

Heat Equation on non-compact

Graphs

2.1 Introduction and Framework:

In the sequel, we will be considering a system of the heat equation on a non-compact graph,
precisely we will define the heat equations on each edge and we will impose non-local Kirchhoff-type
and continuity boundary conditions on the vertices(similar B.C were treated in [7],[8] and [5]).
The aim is to prove the well-posedness of such a problem, and we shall do it in two ways as
mentioned before. We first transform this system of heat equations into an abstract Cauchy problem
(ACP), then for the first method, we use similar tools from "semigroups associated to sesquilinear
form" as was used in ([7],[8] and [5]) for the case of compact graphs, we will proceed similarly as
these papers but prove the results for the generalized case of non-compact graphs. We will show
that the operator in the ACP generates a strongly-continuous semigroup C0-SG, from which the
well-posedness follows immediately. Concerning the second method, we will prove a statement that
enables us to use the results in ([3]) and directly get the well-posedness without further complications.

Consider a network represented by a Non-Compact FENM Graph G, with n vertices v1, ..., vn, m
edges in total, composed from k-directed edges e1, ..., ek, and s := m − k-leads ek+1, ..., em. The
edges are normalized and parameterized on the interval [0, 1] and the leads are parameterized on
R+=[0,∞).Let Γ(vi)=:{j ∈ {1, ...,m} : ej(0) = vi ∨ ej(1) = vi} denotes the set of incident edge’s
indexes for each vertex. The structure of G is given by the previously mentioned Outgoing and
Incoming Incidence Matrices denoted here by Φ+ :=

(
ϕ+

ij

)
n×k

, Φ− :=
(
ϕ−
ij

)
n×k

and an additional
outgoing incidence matrix corresponding to the incidence between the vertices and the leads, denoted
by Φ

+
:=

(
ϕ
+

ij

)
n×s

. These Matrices are defined similarly as in the previous chapter:

ϕ+

ij
:=

 1, if ej(0) = vi,

0, otherwise
; ϕ−

ij
:=

1, if ej(1) = vi,

0, otherwise
; ϕ

+

ij :=

1, if ej(0) = vi,

0, otherwise
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We also consider the Incidence Matrix of G denoted and defined as : Φ=Φ
+
+Φ+−Φ−. This definition

should be thought of as adding rows of zeros for each of the individual matrices so that the sum is
well-defined.

System of equations: We consider a heat equation on each edge with the following conditions:

(SE:)



u̇j(t, x) =
(
u′′
j

)
(t, x) t ∈ (0,∞),

{
x ∈ (0, 1) if j ∈ {1, . . . , k}
x ∈ (0,∞) if j ∈ {k + 1, . . . ,m}

uj (t, vi) = uℓ (t, vi) =: qi(t), t ∈ (0,∞),∀j, ℓ ∈ Γ (vi) , i = 1, . . . , n

[Mq(t)]i = −
∑m

j=1 ϕiju
′
j (t, vi) , t ∈ (0,∞), i = 1, . . . , n

uj(0, x) = uj(x),

{
x ∈ [0, 1] if j ∈ {1, . . . , k}
x ∈ R+ if j ∈ {k + 1, . . . ,m}

Settings and notations:
Here uj(t, .) is a function defined on the edge ej . We denote uj(t, .) at 0 or 1 by uj(t, vi) if
ej(1)=vi or ej(0)=vi and u′

j(t, vi)=0 if j ̸∈ Γ(vi). A function on the whole graph u(t, .) is de-
fined by u(t, .)=(u(t, .), u(t, .))⊺, where u(t, .) = (u1(t, .), ..., uk(t, .))

⊺ ∈ (X[0, 1])k and u(t, .) =

(uk+1(t, .), ..., um(t, .))⊺ ∈ (X[0,∞))s, where (X[0, 1])k and (X[0,∞))s are two appropriately de-
fined (real) functional spaces over [0, 1] and [0,∞) respectively. Here, M=(bij)n×n is assumed to be
a real, symmetric and negative semidefinite matrix. The second line in (SE), is called the continuity
condition and it means that all edges adjacent to a vertex vi must share a common value denoted by
qi(t). The third line is a non-local Kirchhoff-type B.C.
Using the previously defined incidence matrices, the Kirchhoff law can be rewritten as

Mq(t) = −Φ
+
u′(t, 0)− Φ+u′(t, 0) + Φ−u′(t, 1), t ≥ 0.

2.2 Boundary Spaces, Operators, and the ACP

In this subsection, we will rewrite the heating system into an ACP. Because of the presence of the
coordinate x along the edges, we can define naturally a Lebesgue measure on the whole graph.
Therefore we can choose the previously mentioned functional spaces to be: X[0, 1] := L2(0, 1) and
X[0,∞) := L2(0,∞), then we denote by X := (L2(0, 1))k and X := (L2(0,∞))s the state space of
the k directed edges and s leads respectively, and let X := X×X denote the state space of all m edges.

Proposition 1: X is a Hilbert space with the natural inner product:

⟨u, v⟩X :=

k∑
j=1

∫ 1

0

uj(x)vj(x)dx+

m∑
j=k+1

∫ ∞

0

uj(x)vj(x)dx, u, v ∈ X and u, v ∈ X

Proof: L2(0, 1) and L2(0,∞) are Hilbert spaces with their natural inner product, using Definition
1.2.1.1 the proof follows immediately.

We need now to construct boundary operators and spaces. We start by considering first the
continuity condition. Let’s introduce the continuity boundary operator L defined by:D(L) :=

{
u ∈ (C[0, 1])k × (C (R+))

s : uj (vi) = ul (vi) ∀j, l ∈ Γ (vi) , i = 1, n
}

Lu := (q1, · · · , qn)⊤ = q ∈ Rn; qi = uj (vi) for some j ∈ Γ (vi) , i = 1, n
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Let’s define now the Laplace operator Amax on X defined by :

D (Amax) :=
(
H2(0, 1)

)k ×
(
H2 (0,∞)

)s ∩D(L)

Amax :=


∂2

∂x2 · · · 0
...

. . .
...

0 · · · ∂2

∂x2


(m×m)

Consider the following operator, called feedback operator, defined in the following way :{
D(C) := D (Amax)

Cu := −Φ
+
u′(0)− Φ+u′(0) + Φ−u′(1)

Using these operators and spaces we can now reformulate the system of heat equations defined on
each edge, as an abstract Cauchy problem in the following way:

(ACP )

{
u̇(t) = Au(t), t > 0

u(0) = u0 =
(
u0
1, . . . , u

0
m

)⊤ where A is defined by:

{
A := Amax

D(A) := {u ∈ X and MLu = Cu}

2.3 Well-posedness of the abstract Cauchy problem:

2.3.1 First Method:

We will first define a sesquilinear form and its associated operator, prove that it satisfies useful
properties that can be in some sense inherited by this operator, and these properties in turn would
be sufficient for the operator to generate a C0-semigroup. We will also show that this operator is in
fact the operator A in the ACP, and well-posedness then follows immediately. Since the spaces in our
settings are over the set of real numbers, then the sesquilinear form in such cases is called the bilinear
form. The results proven in the sequel are generalizations to results found in (section 2 of [5]) while
the technical and detailed parts for the case without leads can also be found for example in ([7]and [8]).

Consider the bilinear form a defined on X by:
a(u, v) =

∑k
j=1

∫ 1

0
u′
jv

′
jdx+

∑m
j=k+1

∫∞
0

u′
jv

′
jdx−

∑n
i,h=1 bihqhri

D(a) := V :=
(
H1(0, 1)

)k ×
(
H1(R+)

)s ∩D(L)

Where Lu = q and Lv = r

From a we define its associated operator (B,D(B)) by :{
D(B) := {u ∈ V : ∃v ∈ X such that : a(u, ϕ) = ⟨v, ϕ⟩X ∀ϕ ∈ V }
Bu := −v

Proposition 2.3.1.1: The associated operator (B,D(B)) of a is (A,D(A)) in the (ACP).
Proof: Let u ∈ D(A) =⇒ ∀ v ∈ V we have :

a(u, v) =

k∑
j=1

∫ 1

0

u′
jv

′
jdx+

m∑
j=k+1

∫ ∞

0

u′
jv

′
jdx−

n∑
i,h=1

bihqhri
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.
Consider these individual parts:

(a) :=

k∑
j=1

∫ 1

0

u′
jv

′
jdx (b) =

m∑
j=k+1

∫ ∞

0

u′
jv

′
jdx (c) =

n∑
i,h=1

bihqhri.

Then integrating by parts we have :

(a) =

k∑
j=1

[
u′
jvj

]1
0
−

k∑
j=1

∫ 1

0

u′′
j vjdx (b) =

m∑
j=k+1

[
u′
jvj

]∞
0

−
m∑

j=k+1

∫ ∞

0

u′′
j vjdx (c) = ⟨Mq, r⟩R.

We know that :

vj(0) =

n∑
i=1

ϕ+

ij
ri ; vj(1) =

n∑
i=1

ϕ−
ij
ri and u′

j(1) = u′
j(0) = u′

j(vi)

Then
[
u′
jvj

]1
0
= u′

j(1)vj(1)− u′
j(0)vj(0) =

∑n
i=1(ϕ

−
ij
− ϕ+

ij
)riu

′
j(vi)

Suppose for now that v ∈ (C0(R+))
s this implies that

[
u′
jvj

]∞
0

= −u′
j(0)vj(0) = −

∑n
i=1 ϕ

+

ijriu
′
j(vi)

Hence we have : { ∑k
j=1

[
u′
jvj

]1
0
=

∑n
i=1 ri

∑k
j=1(ϕ

−
ij
− ϕ+

ij
)u′

j(vi)∑s
j=k+1

[
u′
jvj

]∞
0

= −
∑n

i=1 ri
∑m

j=k+1 ϕ
+

iju
′
j(vi)

=⇒
k∑

j=1

[
u′
jvj

]1
0
+

m∑
j=k+1

[
u′
jvj

]∞
0

=

n∑
i=1

ri

m∑
j=1

(ϕ−
ij
− ϕ+

ij
− ϕ

+

ij)u
′
j(vi)

From the Kirchhoff condition in matrix form we have:
m∑
j=1

(ϕ−
ij
− ϕ+

ij
− ϕ

+

ij)u
′
j(vi) =

n∑
h=1

bihqh

i.e it is equal to i-th coordinate of the vector [Mq].

=⇒
k∑

j=1

[
u′
jvj

]1
0
+

m∑
j=k+1

[
u′
jvj

]∞
0

=

n∑
i=1

n∑
h=1

bihqhri which is equal to (c)

=⇒ (a) + (b) + (c) = −
[ k∑
j=1

∫ 1

0

u′′
j vjdx+

m∑
j=k+1

∫ ∞

0

u′′
j vjdx

]
=⇒ a(u, v) = −⟨Au, v⟩X

It is now sufficient to show that if (C0(R+))
s is dense in (H1(0,∞))s in the H1 − norm, then

the previous equality holds for every v ∈ V , but This this density is true, therefore the previous
implication holds.
Now we need to show the converse statement: Let u ∈ D(C) =⇒ ∃g ∈ X such that:

(P ) : a(u, v) = ⟨g, v⟩X =

k∑
j=1

∫ 1

0

g
j
vjdx+

k∑
j=k+1

∫ ∞

0

gjvjdx

Let vj ∈ H1
0 (0, 1) and vj ∈ H1

0 (0,∞), consider the functions [0, ..., vj , ..., 0]
T and [0, ..., vj , ..., 0]

T ,
Then using (P ) on such functions individually we get∫ 1

0

u′
jv

′
jdx =

∫ 1

0

g
j
vjdx for all j = 1, ..., k, vj ∈ H1

0 (0, 1)
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∫ ∞

0

u′
jv

′
jdx =

∫ ∞

0

gjvjdx for all j = k + 1, ...,m, vj ∈ H1
0 (0,∞)

By definition of the weak derivatives this means that u′
j ∈ H1(0, 1) for all j = 1, ..., k, and u′

j ∈
H1(0,∞) for all j = k+1, ...,m,. Then it follows that u ∈ (H2(0, 1))k and u ∈ (H2(0,∞))s, therefor
u ∈ (H2(0, 1))k × (H2(0,∞))s .
Using similar integration by part from the proof of the first inclusion and applying (P) for all v ∈ V0

we get
n∑

i=1

ri

m∑
j=1

(ϕ−
ij
− ϕ+

ij
− ϕ

+

ij)u
′
j(vi) =

n∑
i,h=1

bihqhri

since this holds for any v we have :
m∑
j=1

(ϕ−
ij
− ϕ+

ij
− ϕ

+

ij)u
′
j(vi) =

n∑
h=1

bihqh for all i=1,...,n,

But this last formula is nothing but the Kirchhoff condition, therefore u ∈ D(A) and we get from the
integration by parts :

−
k∑

j=1

∫ 1

0

u′′
j vjdx−

k∑
j=k+1

∫ ∞

0

u′′
j vjdx =

k∑
j=1

∫ 1

0

g
j
vjdx+

k∑
j=k+1

∫ ∞

0

gjvjdx

Which holds for all v ∈ V . which implies that Av = −g.

Proposition 2.3.1.2 : a is densely defined, continuous, accretive, closed, and symmetric.
Proof:
Densely defined: We have V := (H1(0, 1))k × (H1(0,∞))s ∩D(L).
We know that (H1(0, 1))k,(C([0.1]))k and (H1(0,∞))s,(C(R+))

s are dense in (L2(0, 1))k

and (L2(0,∞))s respectively, hence it follows that V1 := (H1(0, 1))k ∩ (C([0.1]))k and
V2 := (H1(0,∞))s ∩ (C(R+))

s are also dense in (L2(0, 1))k and (L2(0,∞))s respectively, this
implies that V = V1 × V2 is dense in X = (L2(0, 1))k × (L2(0,∞))s, therefore a is densely defined in
X.
Accretive: By assumption of M we have :

∑n
i,h=1 bihqiqh ≤ 0 =⇒ −

∑n
i,h=1 bihqiqh ≥ 0

=⇒ a(u, u) ≥ 0 =⇒ a is accretive

Symmetric: a is real-valued =⇒ a is symmetric.
Closed: we have V := (H1(0, 1))k × (H1(0,∞))s ∩D(L), denote by H := (H1(0, 1))k × (H1(0,∞))s

, notice that V is a Hilbert space with the natural inner product :

⟨u, v⟩H := ⟨u, v⟩(H1(0,1))k + ⟨u, v⟩(H1(R+))s

Where {
⟨u, v⟩(H1(0,1))k :=

∑k
j=1

∫ 1

0
(u′

jv
′
j + ujv

′
j)dx

⟨u, v⟩(H1(R+))s :=
∑m

j=k+1

∫∞
0

(u′
jv

′
j + ujv

′
j)dx

From (Lemma 3.1 in [7] ) we have that ⟨u, v⟩(H1(0,1))k is equivalent to the following inner product:

⟨u, v⟩V1
:=

k∑
j=1

∫ 1

0

u′
jv

′
jdx for u, v ∈ V1.
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Proof for this can be found in (Lemma 3.1: [7] ) where they used the Poincare inequality to prove it,
but this inequality also holds for domains bounded in one direction, i.e it holds for R+ ([6], theorem
12.17). Therefore we also have that ⟨u, v⟩(H1(0,∞))s is equivalent for the inner product:

⟨u, v⟩V2
:=

m∑
j=k+1

∫ ∞

0

u′
jv

′
jdx for u, v ∈ V2.

Therefore ⟨u, v⟩H is equivalent to ⟨u, v⟩V := ⟨u, v⟩V1 + ⟨u, v⟩V2 .

Now recall that the form a is defined on X by:{
a(u, v) =

∑k
j=1

∫ 1

0
u′
jv

′
jdx+

∑m
j=k+1

∫∞
0

u′
jv

′
jdx−

∑n
i,h=1 bihqhri

D(a) := V

=⇒ a(u, v) = ⟨u, v⟩V −
n∑

i,h=1

bihqhri

We need now to show that V is complete with the norm ∥.∥a. It is sufficient to show that ∥.∥a is
equivalent with ∥.∥V because we know that (V = D(a), ∥.∥V ) is complete.
By definition we have : ∥u∥2a := a(u, u) + ∥u∥2X

=⇒ ∥u∥2a =

k∑
j=1

∫ 1

0

u′2
j dx+

m∑
j=k+1

∫ ∞

0

u′2
j dx−

n∑
i,h=1

bihqhri +

k∑
j=1

∫ 1

0

u2
jdx+

m∑
j=k+1

∫ ∞

0

u2
jdx

=

k∑
j=1

∫ 1

0

(u′2
j + u2

j )dx+

m∑
j=k+1

∫ ∞

0

(u′2
j + u2

j )dx−
n∑

i,h=1

binqhri

= ⟨u, u⟩H −
n∑

i,h=1

binqhri

Because H1(0, 1) and H1(0,∞) are continuously embedded in C[0, 1] and C(R+) respectively we
have:

|qi| ≤ max( max
1⩽j⩽m

max
x∈[0,1]

|uj(x)|; max
1⩽j⩽m

max
x∈R+

|uj(x)|)

=⇒ |qi| ≤ max
1⩽j⩽m

max
x∈[0,1]

|uj(x)|+ max
1⩽j⩽m

max
x∈R+

|uj(x)|)

=⇒ |qi| ≤ max
1⩽j⩽m

∥uj∥H1(0,1) + max
1⩽j⩽m

∥uj∥H1(0,∞)

=⇒ |qi| ≤
k∑

j=1

∥uj∥H1(0,1) +

m∑
j=k+1

∥uj∥H1(0,∞)

By definition we have:
k∑

j=1

∥uj∥H1(0,1) =: ∥u∥(H1(0,1))k and
m∑

j=k+1

∥uj∥H1(0,∞) =: ∥u∥(H1(0,∞))s

=⇒ |qi| ≤ ∥u∥H

but since ∥u∥H is equivalent to ∥u∥V this implies that ∃N ∈ R such that |qi| ≤ N∥u∥V .

We have: ∥u∥2a = ⟨u, u⟩H −
n∑

i,h=1

bihqhri =⇒ ∥u∥2a ≤ |⟨u, u⟩H |+ |−
n∑

i,h=1

bihqhri|

12



≤ |⟨u, u⟩H |+
n∑

i,h=1

|bih||qh||ri|

≤ |⟨u, u⟩H |+N2∥u∥2V
n∑

i,h=1

|bih|

Let b :=
∑n

i,h=1|bih|, using Cauchy-Schwartz inequality and since the ⟨., .⟩H is equivalent to ⟨., .⟩V ,
then there exist some M ∈ R such that:

∥u∥2a ≤ M2∥u∥2V +N2∥u∥2V b

Let Q := (M2 +N2b), then :
∥u∥2a ≤ Q∥u∥2V

Since −
∑n

i,h=1 bihqhri is non-negative,

=⇒ ∥u∥2a − ⟨u, u⟩H ≥ 0

=⇒ ∥u∥2a ≥ M2∥u∥2V

=⇒ ∥u∥a is equivalent to ∥u∥V

=⇒ a is closed in X

Continuity: Let u, v ∈ V we have:

|a(u, v)| ≤ |
k∑

j=1

∫ 1

0

u′
jv

′
jdx+

m∑
j=k+1

∫ ∞

0

u′
jv

′
jdx|+

n∑
i,h=1

|bin||qh||ri|

≤ |⟨u, v⟩V |+N2∥u∥v∥v∥V b

≤ ∥u∥V ∥v∥V +N2∥u∥v∥v∥V b

≤ R∥u∥V ∥v∥V

Where R = (1 + N2b) and we used the Cauchy-Schwarz inequality in the last step. Therefore the
form is continuous.

Proposition 2.3.1.3: (A,D(A)) is densely defined, dissipative, self-adjoint and generates a
C0-semigroup of contractions (T (t))t≥0 onf X.
Proof: The properties of A follows from Proposition 1.2.3.3 and 1.2.3.4. A being the generator of a
C0-semigroup of contractions follows from Proposition 1.2.3.5

Corollary 2.3.1.4: The (ACP) is well-posed on X.
Proof: The Proof follows from Proposition 1.2.1.3 and Theorem 1.2.2.2

13



2.3.2 Second Method:

The result concerning the well-posedness of the system of heat equations for more general bound-
ary conditions as well as including the general case of the non-compact graph can be found in
section 3 of [3]. The results were proved using different tools such as linking cosine families with
semigroup theory. The aim now is to fit the framework of this project into the paper [3]. The
setting used here are similar to the ones used in section 3 of [3], the difference is the bound-
ary condition, so we will show that under an assumption on the graph, the non-local-Kirchhoff
B.C considered in this report, is, in fact, a special case of the more general condition considered in [3].

Non-local boundary conditions : ([3], section 3.4)
(N) : Φ

+
M

+
u(0) + Φ+M+u(0) + Φ−M−u(1) = Φ

+
u′(0) + Φ+u′(0)− Φ−u′(1)

Where M
+
= (m+

ij)s×s , M+ = (m+
ij)k×k and M− = (m−

ij)k×k are real matrices.

Proposition 6:
Let’s suppose that the graph is strongly connected. Then the non-local-Kirchhoff-type condition, i.e

(K) : −Mq = Φ
+
u′(0) + Φ+u′(0)− Φ−u′(1)

can be represented in the form of condition (N).
Proof: The right-hand side of equations (N) and (K) are the same, so it is sufficient to show that
the −Mq can be written as the left-hand side of (N). We want to write −Mq as the left-hand
side of (N), but notice that they are both vectors with n-coordinates. Every coordinate of the
left-hand side of both equations is in fact some linear combinations of (qi)i∈{1,...,n}. Since the graph
is strongly connected, that means that the resulting internal subgraph G′, by deleting all the leads
is also strongly connected because the leads don’t add any paths between the edges, then every
vertex in G′ has at least one outgoing and incoming edge. In terms of our problem, each lead is
connected to some incoming or outgoing edge and they share a common vertex, and by continuity,
the value at this vertex added by an arbitrary lead ej , denote such value by uj(0) is in fact equal
to ul(0) or ul(1) depending wether el is an outgoing or incoming edge ( here el is some directed
edge that share a common vertex with the lead ej) , then these values from the leads must be
equal to some of the coordinates q1, ..., qn, then this means a linear combination of the q1, ..., qn

coming from the right-hand side of (N) can be represented by a linear combination coming from :
Φ+M+u(0) +Φ−M−u(1), up to some linear change in the coefficients. Therefore we can reduce this
problem to the case where there are no leads but only directed m edges.

The Graph is strongly connected, so first, the number of edges is at least the number of ver-
tices; second, remark that with such an assumption, every vertex has at least one outgoing edge
this implies that every qi can be represented by some of the coordinates of the vector u(0), i.e
for fixed indices r1, ..., rn, we have (qr1 , ..., qrn) = (ur1

(0), ..., urn
(0)), let’s also permute the vector

((−bi1), ..., (−bin)) by the same permutation as (qr1 , ..., qrn), and we get the permuted vector
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((−bir1), ..., (−birn)) , then we have

[−Mq]i =

n∑
h=1

(−bih)qh =

n∑
h=1

(−birh)qrh =

n∑
h=1

(−birr )urr
(0)

Let’s suppose for now that every vertex has exactly one outgoing edge. This means that there is
only one entry in the i-th row of Φ+ that is equal to 1, let p be the column index for such entry, i.e
ϕ+

ip
= 1. Then

[−Mq]i =

n∑
h=1

(−birh)urh
(0) =

n∑
h=1

ϕ+

ip
(−birh)urh

(0)

=

n∑
h=1

ϕ+

ip
(−birh)urh

+ ϕ+

ip
.0.urn+1

(0) + ...+ ϕ+

ip
.0.urm

(0)

Let : (−birn+1
) = (−birn+2

) = ... = (−birm) = 0 =⇒ [−Mq]i =

m∑
h=1

ϕ+

ip
(−birh)urh

(0)

Set M+ = [m+
1 , ...,m

+
m] where m+

j = [m+
1j , ...,m

+
mj ]

T ∀j = 1, ...,m

Let m+
p = [m+

1p, ...,m
+
mp]

T := [(−bir1), ..., (−birm)]T and for all j except p define m+
j = [0, ..., 0]T

Then, Since ϕ+

ij
= 0 ∀j = 1, .., p− 1, p+ 1, ...,m we have :

[−Mq]i =

m∑
h=1

ϕ+

ip
(−birh)urh

(0) =

m∑
h=1

ϕ+

ih
m+

1hur1
(0) + ...+

m∑
h=1

ϕ+

ih
m+

mhurm
(0)

=

[
m∑

h=1

ϕ+

ih
m+

1h, ...,

m∑
h=1

ϕ+

ih
m+

mh

][
ur1

(0), ..., urm
(0)

]T

= [Φ+M+u(0)]i

=⇒ −Mq = Φ+M+u(0)

Now take M− = 0 Then we have:

=⇒ −Mq = Φ+M+u(0) + Φ−M−u(1)

Earlier we supposed that every vertex has exactly one outgoing edge, this is, in fact, sufficient,
because if some vertex has more outgoing edges then again the equation would be equal up to some
linear change in some of those coordinates that we took to be equal to 0 for example.
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