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Parametrization

Consider a network represented by a Non-Compact finite metric
Graph G, with n vertices v1, ..., vn, m edges in total, composed from
k-directed edges e1, ..., ek , and s := m − k-leads ek+1, ..., em.

The edges are normalized and parameterized on the interval [0, 1] and
the leads are parameterized on R+=[0,∞).
Let Γ(vi )=:{j ∈ {1, ...,m} : ej(0) = vi ∨ ej(1) = vi} denotes the set
of incident edge’s indexes for each vertex.
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Structure of the graph

The structure of G is given by the Outgoing and Incoming Incidence
Matrices corresponding to the directed edges, denoted here by
Φ+ :=

(
ϕ+

ij

)
n×k

, Φ− :=
(
ϕ−
ij

)
n×k

and an additional outgoing

incidence matrix corresponding to the leads, denoted by
Φ

+
:=

(
ϕ
+

ij

)
n×s

.

These Matrices are defined as :

ϕ+

ij
:=

{
1, if e j(0) = vi ,
0, otherwise ; ϕ−

ij
:=

{
1, if e j(1) = vi ,

0, otherwise

ϕ
+

ij :=

{
1 if e j(0) = vi ,
0 otherwise
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System of Heat Equations

(SE):

u̇j (t, x) =
(
u′′j

)
(t, x) t ∈ (0,T ],

{
x ∈ (0, 1) if j ∈ {1, . . . , k}
x ∈ R+ if j ∈ {k + 1, . . . ,m}

uj (t, vi ) = uℓ (t, vi ) =: qi (t), t ∈ (0,T ], ∀j , ℓ ∈ Γ (vi ) , i = 1, . . . , n

[Mq(t)]i = −
∑m

j=1 ϕiju
′
j (t, vi ) , t ∈ (0,T ], i = 1, . . . , n

uj (0, x) = uj (x),

{
x ∈ (0, 1) if j ∈ {1, . . . , k}
x ∈ R+ if j ∈ {k + 1, . . . ,m}
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Settings and notations

Here uj(t, .) is a function defined the edge ej .

We denote uj(t, .) at 0 or 1 by uj(t, vi ) if ej(1)=vi or ej(0)=vi and
u′j (t, vi )=0 if j ̸∈ Γ(vi ).

A function on the whole graph u(t, .) is defined by
u(t, .)=(u(t, .), u(t, .))⊺, where
u(t, .) = (u1(t, .), ..., uk(t, .))

⊺ ∈ (X [0, 1])k and
u(t, .) = (uk+1(t, .), ..., um(t, .))

⊺ ∈ (X [0,∞))s , where (X [0, 1])k and
(X [0,∞))s are two appropriately defined (real) functional spaces over
[0, 1] and [0,∞) respectively.

Here, M=(bij)n×n is assumed to be a real, symmetric and negative
semi-definite matrix.
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The second line in (SE), is called the continuity condition and it
means that all edges adjacent to a vertex vi must share a common
value denoted by qi (t).

The third line is a non-local Kirchhoff-type B.C.

Using the previously defined incidence matrices, the Kirchhoff law can
be rewritten as

Mq(t) = −Φ
+
u′(t, 0)− Φ+u′(t, 0) + Φ−u′(t, 1), t ≥ 0.
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State space:

Let X := (L2(0, 1))k and X := (L2(0,∞))s the state space of the k
directed edges and s leads respectively, and let X := X × X denote
the state space of all m edges.

Proposition 1:

X is a Hilbert space with the natural inner product:

⟨u, v⟩X :=
k∑

j=1

∫ 1

0
uj (x)v j (x)dx+

m∑
j=k+1

∫ ∞

0
uj (x)v j (x)dx , u, v ∈ X and u, v ∈ X
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Boundary spaces and operators:


D(L) :=

{
u ∈ (C [0, 1])k × (C (R+))s : uj (vi ) = ul (vi ) ∀j , l ∈ Γ (vi ) , i = 1, n

}
Lu := (q1, · · · , qn)⊤ = q ∈ Rn; qi = uj (vi ) for some j ∈ Γ (vi ) , i = 1, n

Let’s define now the Laplace operator Amax on X defined by :

D (Amax) :=
(
H2(0, 1)

)k ×
(
H2 (0,∞)

)s ∩ D(L)

Amax :=


∂2

∂x2 · · · 0
...

. . .
...

0 · · · ∂2

∂x2


(m×m)

Consider the following operator, called feedback operator, defined in the
following way : 

D(C) := D (Amax)

Cu := −Φ
+
u′(0)− Φ+u′(0) + Φ−u′(1)
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Abstract Cauchy problem

Using these operators and spaces we can now reformulate the system
of heat equations defined on each edge, as an abstract Cauchy
problem in the following way:

(ACP)


u̇(t) = Au(t), t > 0

u(0) = u0 =
(
u0
1 , . . . , u

0
m

)⊤ where

 A := Amax

D(A) := {u ∈ X and MLu = Cu}
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Bilinear form and associated operator:

Consider the bilinear form a defined on X by:
a(u, v) =

∑k
j=1

∫ 1
0 u′jv

′
jdx +

∑m
j=k+1

∫∞
0 u′jv

′
jdx −

∑n
i,h=1 bihqhri

D(a) := V :=
(
H1(0, 1)

)k × (
H1(R+)

)s ∩ D(L)

Where Lu = q and Lv = r

From a we define its associated operator (B,D(B)) by : D(B) := {u ∈ V : ∃v ∈ X such that : a(u, ϕ) = ⟨v , ϕ⟩X ∀ϕ ∈ V }

Bu := −v
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Generalized results

Proposition 2: The associated operator (B,D(B)) of a is (A,D(A))
in the (ACP).

Proof:
Proof: Let u ∈ D(A) =⇒ ∀ v ∈ V we have :

a(u, v) =
k∑

j=1

∫ 1

0
u′jv

′
jdx +

m∑
j=k+1

∫ ∞

0
u′jv

′
jdx −

n∑
i,h=1

bihqhri

. Using integration by part and the fact that (C0(R+))
s is dense in

(H1(0,∞))s in the H1 − norm we get

=⇒ a(u, v) = −
[ k∑

j=1

∫ 1

0
u′′j v jdx +

m∑
j=k+1

∫ ∞

0
u′′j v jdx

]
=⇒ a(u, v) = −⟨Au, v⟩X
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0
u′jv

′
jdx −

n∑
i,h=1

bihqhri

. Using integration by part and the fact that (C0(R+))
s is dense in

(H1(0,∞))s in the H1 − norm we get

=⇒ a(u, v) = −
[ k∑

j=1

∫ 1

0
u′′j v jdx +

m∑
j=k+1

∫ ∞

0
u′′j v jdx

]
=⇒ a(u, v) = −⟨Au, v⟩X
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Proposition 3: a is densely defined, continuous, accretive, closed,
and symmetric.

Proof:
We want to show that ∥u∥a is complete in D(a), where
∥u∥2

a = Ra(u, v) + ∥u∥2
H

We have that V is Hilbert with

⟨u, v⟩H := ⟨u, v⟩(H1(0,1))k + ⟨u, v⟩(H1(0,∞))s

First step: ⟨u, v⟩H is equivalent to ⟨u, v⟩V := ⟨u, v⟩V1 + ⟨u, v⟩V2 .,
where:

⟨u, v⟩V1 :=
k∑

j=1

∫ 1

0
u′jv

′
jdx for u, v ∈ V1.

⟨u, v⟩V2 :=
m∑

j=k+1

∫ ∞

0
u′jv

′
jdx for u, v ∈ V2.

Second step: ∥.∥a is equivalent with ∥.∥V
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Proposition 4: (A,D(A)) is densely defined, dissipative, self-adjoint
and generates a C0-semigroup of contractions (T (t))t≥0 onf X.

Proof:

Proposition 1.2.3.3 If a bilinear form is densely defined, accretive,
continuous, and closed on a Hilbert space H, and A is the operator
associated with it. Then A is densly defined, and ∀λ ≥ 0, the
operator (λ+A) is invertible and it’s inverse (λ+A)−1 is bounded
and ∥λ(λ+A)−1f ∥ ≤ ∥f ∥ for all λ ≥ 0, f ∈ H

Proposition 1.2.3.4 : If a sesquilinear form is symmetric then the
operator associated with it is self-adjoint.

Proposition 1.2.3.5 : If a bilinear form is densely defined, accretive,
continuous, and closed on a Hilbert space H, and A is the operator
associated with it. Then the operator −A is the generator of a
C0-contraction-semigroup on H.
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Proposition 5:The (ACP) is well-posed on X.

Proof:

Proposition 1.2.1.3 : If A is a densely defined operator then the
adjoint of A is a closed operator.

Theorem 1.2.2.2, Well-posedness for evolutionary equations :
For a closed operator A : D(A) ⊂ X → X , the associated (ACP) is
well-posed if and only if A generates a C0-semigroup on X
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General non local condition

(N) : Φ
+
M

+
u(0) + Φ+M+u(0) + Φ−M−u(1) = Φ

+
u′(0) + Φ+u′(0)− Φ−u′(1)

Where M
+
= (m+

ij )s×s , M+ = (m+
ij )k×k and M− = (m−

ij )k×k are real
matrices.
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Statement

Proposition 6:
Let’s suppose that the graph is strongly connected. Then the
non-local-Kirchhoff-type condition, i.e

(K ) : −Mq = Φ
+
u′(0) + Φ+u′(0)− Φ−u′(1)

can be represented in the form of condition (N).

Proof: First step: the problem can be reduced to the case when we
only have directed edges without any leads.
Second step :

[−Mq]i =
n∑

h=1

(−bih)qh =
n∑

h=1

(−bi rh)qrh =
n∑

h=1

(−bi rh)urh(0)
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Let’s suppose for now that every vertex has exactly one outgoing
edge. This means that there is only one entry in the i-th row of Φ+

that is equal to 1, let p be the column index for such entry, i.e
ϕ+

ip
= 1.

Third step :

[−Mq]i =
n∑

h=1

(−bi rh)urh(0) =
n∑

h=1

ϕ+

ip
(−bi rh)urh(0)

=
n∑

h=1

ϕ+

ip
(−bi rh)urh + ϕ+

ip
.0.urn+1

(0) + ...+ ϕ+

ip
.0.urm(0)

Let : (−bi rn+1 ) = (−bi rn+2 ) = ... = (−bi rm ) = 0 =⇒ [−Mq]i =
m∑

h=1

ϕ+
ip
(−bi rh )urh (0)

Set M+ = [m+
1 , ...,m+

m] where m+
j = [m+

1j , ...,m
+
mj ]

T ∀j = 1, ...,m
Let m+

p = [m+
1p , ...,m

+
mp ]

T := [(−bi r1 ), ..., (−bi rm )]
T and for all j except p define

m+
j = [0, ..., 0]T
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Then, Since ϕ+

ij
= 0 ∀j = 1, .., p − 1, p + 1, ...,m we have :

[−Mq]i =
m∑

h=1

ϕ+
ip
(−bi rh )urh (0) =

m∑
h=1

ϕ+
ih
m+

1hur1 (0) + ...+
m∑

h=1

ϕ+
ih
m+

mhurm (0)

=

[
m∑

h=1

ϕ+
ih
m+

1h, ...,
m∑

h=1

ϕ+
ih
m+

mh

][
ur1 (0), ..., urm (0)

]T

= [Φ+M+u(0)]i

=⇒ −Mq = Φ+M+u(0)

Now take M− = 0 Then we have:

=⇒ −Mq = Φ+M+u(0) + Φ−M−u(1)
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THANK YOU
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