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Introduction

Study of the computer vision allows us to understand the interaction between
digital images and the physical environment and use this knowledge to auto-
mate the processes of humankind. One of the challenging fields in computer
vision is a 3D reconstruction, which is the process of capturing the shape and
appearance of real objects. Using 3D reconstruction one can determine an ob-
ject’s 3D profile, as well as knowing the 3D coordinate of any point on the
profile. 3D reconstruction has plenty of applications in different fields such
as computer graphics, computer animation, computer vision, medical imaging,
computational science, virtual reality, digital media, etc. The 3D object or scene
can be constructed from its point cloud, thus finding the point cloud of the ob-
ject or scene is an essential task. This work is going to overview and implement
the methods of estimating point cloud from known point correspondences and
intrinsic parameters of the camera or/and extrinsic parameters as well.

Theoretical background

Point representation

The model of the image is the 2D projective plane P2 (see Figure 1).

Figure 1. Point projection into the image plane [1]

A point (x, y)T in the image is transferred into homogeneous coordinates by 3D
vector (X,Y,W )T , where x = X/W and y = Y/W . This modification allows
representing any transformation between points by matrix. In this same way,
one can define any 3D point (x, y, z)T as (X,Y, Z,W )T , where x = X/W , y =
Y/W and z = Z/W . Most of the time W is 1 for simplification of calculations.

Connection between 3D world point and 2D image point

In pinhole camera model, a mapping from world coordinates into pixel coordi-
nates is given by:

p = PX (1)

where p ∈ R3x1 presents point in image, and it is represented by
[
u v 1

]T
without loss of generality; X ∈ R4x1 and it is represented by

[
X Y Z 1

]T
without loss of generality; P denotes 3x4 projection matrix. Moreover, projec-
tion matrix is decomposed by:

P = K[R|t], (2)
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where K is camera matrix; R and t are rotation matrix and translation vector
between world and camera coordinates, respectively.

Estimating 3D point from 2D point using stereo vision

Eq. 1 can be rewritten as follows:

p×PX = 0 (3)

By writing all three resultant equations:

up3
TX− p1

TX = 0

vp3
TX− p2

TX = 0

up2
TX− vp1

TX = 0,

(4)

where pi is i-th row of projection matrix P. Since third equation can be ex-
pressed by first two, it will be dropped out. Since stereo vision is used following
system of linear equation is formed:

u(1)(p3
T )(1) − (p1

T )(1)

v(1)(p3
T )(1) − (p2

T )(1)

u(2)(p3
T )(2) − (p1

T )(2)

v(2)(p3
T )(2) − (p2

T )(2)

X = 0 (5)

Here, coefficient matrix is A ∈ R4×4. During solving this homogeneous system
of linear equations, scale of X will be lost.

Epipolar geometry

According to Hartley and Zisserman [2], “The epipolar geometry is the intrinsic
projective geometry between two views. It is independent of scene structure,
and only depends on the cameras’ internal parameters and relative pose.”
One of its main concepts is fundamental matrix, which encapsulates intrinsic
projective geometry in stereo vision. Besides, each PC must satisfy the following
relation:

(p(2))TFp(1) = 0, (6)

where F is a singular 3x3 fundamental matrix. In the matrix format:

[
u(2) v(2) 1

] f11 f12 f13
f21 f22 f23
f31 f32 f33

u(1)

v(1)

1

 = 0 (7)

For arbitrary n correspondences (7) can be rearranged to the following form:
u
(2)
1 u

(1)
1 u

(2)
1 v

(1)
1 u

(2)
1 v

(2)
1 u

(1)
1 v

(2)
1 v

(1)
1 v

(2)
1 u

(1)
1 v

(1)
1 1

...
...

...
...

...
...

...
...

...

u
(2)
n u

(1)
n u

(2)
n v

(1)
n u

(2)
n v

(2)
n u

(1)
n v

(2)
n v

(1)
n v

(2)
n u

(1)
n v

(1)
n 1


[
f11 f12 f13 f21 f22 f23 f31 f32 f33

]T
= 0

(8)
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The matrix with known variables has a size of n × 9, and one can choose the
value of the norm of the unknown vector arbitrarily. Thus, eight or more corre-
spondences are required to solve this system. Also, Figure 2 portrays geometric
relations between pairs of projected points.

Figure 2. Representation of fundamental matrix [1]

Another concept in epipolar geometry is an epipole or an epipolar point. It is
the point created from the intersection between the image plane and line joining
the camera centers, which is the baseline. Both of the images have epipolar

points, and they have the following structure: e =
[
eu ev 1

]T
and e′ =[

e′u e′v 1
]T

, where e and e′ are the epipoles for the first and second images,
respectively. The relationship between epipolar points and the fundamental
matrix has the following form:

Fe = 0

FTe′ = 0
(9)

The point that has corresponding point on the second image, must locate on the
line specified by the Fundamental matrix and that corresponding point. The
lines are called epipolar lines and they can be formulated as:

l(2) =

a′y′
c′

 = Fp(1)

l(1) =

ay
c

 = FTp(2)

(10)

Set of l(2) lines coming from all p(1) of the first image has to be intersected at
the epipole of the second image. The same is true for the other image.
Essential matrix is the special case of the fundamental matrix when image co-
ordinates normalized by camera:

(p̂(2))TEp̂(1) = 0, (11)

where p̂(i) is (K−1)(i)p̂(i) for i = 1, 2 and E is an 3x3 essential matrix. Essential
matrix can be estimated as fundamental matrix, but the only difference is that
it needs minimum five points.

3



Essential matrix decomposition

The essential matrix defines rotation and translation variables between two cam-
eras:

E = [t]×R (12)

It is worth noting that [t]× is skew symmetric matrix. The decomposition of E
defines four possible values of projection matrix and only one of them is correct
(see Figure 3). One of the properties of the essential matrix is that two of its
singular values are equal and third one is zero. Suppose that P(1) = K(1)[I|0]
and SVD of E is Udiag(1, 1, 0)VT , then four solutions are:

1. P(2) = K(2)[UWVT|+u3]

2. P(2) = K(2)[UWVT|−u3]

3. P(2) = K(2)[UWTVT|+u3]

4. P(2) = K(2)[UWTVT|−u3]

+u3 is third column of matrix U and W is orthogonal matrix:

W =

0 −1 0
1 0 0
0 0 1

 (13)

Figure 3. The four possible solutions of the projections [1]

Homogeneous system of linear equations

Any system of linear equations in the form of Ax = 0, where A ∈ Rk×n is
matrix of known variables, while x ∈ Rnx1 is a vector of independent unknown
variables; can be solved using lagrange-multipliers if k > n− 1 by constraining
the norm of x to be any arbitrary value, usually it is 1. Thus, solution of x is the
(one dimensional) kernel of A and it is an eigenvector with at least eigenvalue
of ATA subjected to

∥∥x∥∥ = 1. If k = n− 1, the solution is solved exactly and
if k > n− 1, the system is overdetermined.
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Data normalization

Since linear system of equations are solved here, point normalization have a
positive effect on increase of condition number of the the coefficient matrix of
the fundamental and essential matrix, which ensures to estimate the inverse of
those safely. Point normalization is done in the following manner for each image
independently:

• Translate the points such that centroid is at the origin:

translated(pi) = p′i = pi − average(p) ∀i (14)

• Scale points so that the average distance from origin is
√

2:

normalized(pi) = pi =

√
2n∑n

j=1

√
p2jx + p2jy

p′i ∀i (15)

, where n is number of points, p =


x1

y1
1

 ,

x2

y2
1

 , ...,

xn

yn
1

, pjx is xj

and pjy is yj .

Structure of this manipulation in the matrix format looks as following:

p̄i =

sx 0 0
0 sy 0
0 0 1

1 0 t′x
0 1 t′y
0 0 1

xi

yi
1

 =

sx 0 sxt
′
x

0 sy syt
′
y

0 0 1

xi

yi
1

 =

sx 0 tx
0 sy ty
0 0 1

xi

yi
1

 = Tpi

(16)

Clustering algorithm

Unfortunately, processing data may contain outliers, which are elements of the
dataset that do not support the prevailing model, and they have to be detected
to make sure that result is correct. One of the clustering techniques is the
random sample consensus (RANSAC), which segments data into inliers and
outliers, which solves this problem. It is an iterative non-deterministic algorithm
producing acceptable results with a certain probability. Each iteration has the
following steps.

• Randomly selects a subset from the dataset, with size n, which is a min-
imum number of elements to describe the model, i.e., the DoF of the
model.

• Define the model using those hypothetical inliers.

• Test dataset using the defined model according to some loss functions.
If an element has a loss value under the specified threshold, then it is
considered as an inlier; otherwise, it is an outlier.

• The model is identified as a better one among previously defined models
if it fits more data than them.
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It is noteworthy that the user specifies the number of iterations and threshold
for the loss value. It might be the case that the user may specify a higher
number of iterations than it should be to estimate the predominant model. The
maximum number of iterations can be predicted under some confidence level
by:

k =
log(1− p)

log(1− wn)
, (17)

where k is the predicted maximum number of iterations, p is the confidence
level, w is the inlier ratio, and n is the minimum number of elements needed to
construct the model. Furthermore, RANSAC can be fastened by adding local
optimization at the iterations where a better model is found [3]. This extra
work might increase the time of RANSAC; however, they proved controversial
by the experiment. The least-square method is implemented in this work as
local optimization. After finding each better model among previous ones, a
hypothetical model is computed using all inliers found by the minimum number
of elements. Then, the better model is chosen among the two.
Sometimes, data consists of multiple models, and simple RANSAC will find
only the predominant one. Usage of Sequential RANSAC can be beneficial
since it can overcome this issue. It executes RANSAC iteratively, and after
each increment, it removes inliers of the predominant model from the data and
seeks to find another model using the resultant outliers.

Testing

Only two cases will be considered, when projection matrix is prior known and
camera matrix is given. It may be noticed that third case, which is dealing
with unknown projection matrix and camera matrix is not considered. As it
was overviewed before, the rotation and translation variables are estimable from
the essential matrix. RANSAC is used for estimating the essential matrix and
fundamental matrix. Technically, we don’t require the fundamental matrix for
our computation, but we can check the result of essential by visualizing the
fundamental matrix.
The testing of the feasibility of the case with known camera parameters de-
manded the construction of the synthetic scene. Specifically, three mutually
perpendicular chessboard planes are constructed and used as the synthetic scene.
Later, at two different angles images are photographed without losing any square
on the planes (see Figure 4). Moreover, only the inner vertices are selected to be
point correspondences. Overall, each chessboard plane has 48 appealing points.

Figure 4. Synthetic data and correspondences in them

Fundamental matrix then is estimated using those 48 pair points and epipolar
lines are presented in Figure 5.

6



(a) First image (b) Second image

Figure 5. Epipolar lines for the first and second image for chessboard case

This result looks good and the essential matrix now can be calculated from
the fundamental matrix. After decomposing the essential matrix, four possible
solutions are obtained and only one of them is good (see resultant good 3D
point cloud in Figure 6).

Figure 6. 3D point cloud of the 3 planes of the chessboard. Red, greed and blue
lines represent x, y and z axes, respectively

For testing the case when projection matrix is already known, a dinosaur from
dataset from Visual Geometry Group Of Oxford University is used [4]. Since
stereo vision is used and there are 36 different images, all possible image pairs are
used which is

(
36
2

)
. Obtained 3D point clouds using stereo vision is represented

in Figure 7.
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(a) One view (b) Second view

Figure 7. 3D point clouds of dinosaur

The result is almost perfect, but there are some points far from the dinosaur. It
can be explained by the fact that coordinates of some point correspondences are
not exactly true and they are located at the edge of the dinosaur. This small
error may the solver think that point is behind the dinosaur.
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