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Eötvös Loránd University

yeraly.kalel@nu.edu.kz

December 17, 2020

Yeraly Kalel (ELTE) Computer vision December 17, 2020 1 / 21



Applications of 3D reconstruction

Computer graphics

Medical imaging

Computer animation

Computational science

Virtual reality
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Point representations

2D point (x , y)T in homogeneous coordinates

3D vector (X ,Y ,W )T , where x = X/W and y = Y /W

3D point (x , y , z)T in homogeneous coordinates

4D vector (X ,Y ,Z ,W )T , where x = X/W , y = Y /W and

z = Z/W
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Relationship of 3D world point with 2D image point

In pinhole camera model, a mapping from world coordinates into pixel

coordinates:

p = PX (1)

where p is 2D point in image (
[
u v 1

]T
); X is 3D world point

(
[
X Y Z 1

]T
); P ∈ R3x4 is projection matrix.

P = K[R|t] (2)

where K ∈ R3x3 is camera matrix; R ∈ R3x3 and t ∈ R3x1 are rotation

matrix and translation vector between world and camera coordinates,

respectively.
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Estimating 3D point from 2D point using stereo vision

Eq. 1 can be rewritten as follows:

p× PX = 0 (3)

By writing all three resultant equations:

up3
TX− p1TX = 0

vp3
TX− p2TX = 0

up2
TX− vp1TX = 0,

(4)

where pi is i-th row of projection matrix P. For stereo vision:
u(1)(p3

T )(1) − (p1
T )(1)

v (1)(p3
T )(1) − (p2

T )(1)

u(2)(p3
T )(2) − (p1

T )(2)

v (2)(p3
T )(2) − (p2

T )(2)

X = 0 (5)
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Epipolar geometry

Figure 1: Representation of epipolar geometry [1]
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Epipolar geometry - Fundamental matrix

Fundamental matrix encapsulates intrinsic projective geometry in stereo

vision. Besides, each point correspondence must satisfy the following

relation: [
u(2) v (2) 1

] f11 f12 f13

f21 f22 f23

f31 f32 f33

u(1)v (1)
1

 = 0 (6)

where f is a singular 3x3 fundamental matrix. For arbitrary n

correspondences (6) can be rearranged to the following form:u
(2)
1 u

(1)
1 u

(2)
1 v

(1)
1 u

(2)
1 v

(2)
1 u

(1)
1 v

(2)
1 v

(1)
1 v

(2)
1 u

(1)
1 v

(1)
1 1

...
...

...
...

...
...

...
...

...

u
(2)
n u

(1)
n u

(2)
n v

(1)
n u

(2)
n v

(2)
n u

(1)
n v

(2)
n v

(1)
n v

(2)
n u

(1)
n v

(1)
n 1


[
f11 f12 f13 f21 f22 f23 f31 f32 f33

]T
= 0

(7)
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Epipolar geometry - Epipolar lines

The point that has corresponding point on the second image, must locate

on the line specified by the Fundamental matrix and that corresponding

point. The lines are called epipolar lines and they can be formulated as:

l(2) =

a′y ′
c ′

 = Fp(1)

l(1) =

ay
c

 = FTp(2)

(8)
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Epipolar geometry - Essential matrix

Essential matrix is the special case of the fundamental matrix when

image coordinates normalized by camera:

(p̂(2))TEp̂(1) = 0, (9)

where p̂(i) is (K−1)(i)p̂(i) for i = 1, 2 and E is an 3x3 essential matrix.
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Essential matrix decomposition

The essential matrix defines rotation and translation variables between

two cameras:

E = [t]×R (10)

Suppose that

P(1) = K(1)[I|0]
SVD of E is Udiag(1, 1, 0)VT

In this case, four possible solutions are
1 P(2) = K(2)[UWVT|+u3]
2 P(2) = K(2)[UWVT|−u3]
3 P(2) = K(2)[UWTVT|+u3]
4 P(2) = K(2)[UWTVT|−u3]

+u3 is third column of matrix U and W is orthogonal matrix:

W =

0 −1 0

1 0 0

0 0 1

 (11)
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Essential matrix decomposition (cont.)

Figure 2: The four possible solutions of the projections [1]
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Clustering algorithm improvement

The maximum number of iterations can be predicted under some

confidence level by:

k =
log(1− p)
log(1− wn) , (12)

where k is the predicted maximum number of iterations, p is the

confidence level, w is the inlier ratio, and n is the minimum number

of elements needed to construct the model.

Local optimization can be applied to fasten RANSAC [2].

Specifically, If the better model is found, least-square method is

applied with new best inliers to estimate hypothesized model. Better

model is chosen among those two.

Yeraly Kalel (ELTE) Computer vision December 17, 2020 12 / 21



Testing if projection matrix is unknown

Figure 3: Synthetic data and correspondences in them

(a) First image (b) Second image

Figure 4: Epipolar lines for the first and second image for chessboard case
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Testing if projection matrix is unknown

Figure 5: 3D point cloud of the 3 planes of the chessboard. Red, greed and blue

lines represent x, y and z axes, respectively
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Testing if projection matrix is known

(a) One view (b) Second view

Figure 6: Representation of dinosaur [3]
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Testing if projection matrix is known

(a) One view (b) Second view

Figure 7: 3D point clouds of dinosaur
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Thank you for attention!
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Homogeneous system of linear equations

Homogeneous system of linear equations has the following form:

Ax = 0 (13)

where A ∈ Rk×n is matrix of known variables, x ∈ Rnx1 is a vector of

independent unknown variables.

This can be solved by using lagrange-multipliers if k > n − 1.

The solution of x is the (one dimensional) kernel of A and it is an

eigenvector with at least eigenvalue of ATA subjected to
∥∥x∥∥ = 1.
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Clustering algorithm

Outiler detector method random sample consensus (RANSAC) is used.

Each iteration:

1 Randomly selects a subset from the dataset, with size n, which is a

minimum number of elements to describe the model, i.e., the DoF

of the model.

2 Define the model using those hypothetical inliers.

3 Test dataset using the defined model according to some loss

functions. If an element has a loss value under the specified

threshold, then it is considered as an inlier; otherwise, it is an outlier.

4 The model is identified as a better one among previously defined

models if it fits more data than them.
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Point normalization

Point normalization have a positive effect on increase of condition

number of the the coefficient matrix.

Procedure:

1 Translate the points such that centroid is at the origin

2 Scale points so that the average distance from origin is
√
dimension
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