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Supervisor: Balázs Csanád Csáji

I. INTRODUCTION

A multi-armed bandit problem is a problem in which a series
of decisions have to be made in order to maximize the expected
reward while having partial knowledge of the usefulness of the
actions. However, by choosing an action, we get information
about the usefulness of that specific action. The multi-armed
bandit problem is one of the most studied problems in decision
theory [1] with many applications including A/B testing,
advert placement and recommendation services [2].

I have investigated a special case of the multi-armed bandit
problem, in which further information about the structure of
the arms is known. I have developed a new algorithm that finds
the optimal arm with high probability and proved a theorem
about its sample complexity.

II. MULTI-ARMED BANDITS

The multi-armed bandit model consists of a set of arms A
(n = |A|) and to every arm a ∈ A belongs a distribution ν(a).
In each round an arm a ∈ A is chosen and a reward R(a) is
sampled from distribution ν(a). An arm is called optimal, if it
has the highest expected reward among all of the arms. There
can be multiple optimal arms, their expected reward is denoted
by r∗.

Definition 1. An arm a ∈ A is called ε-optimal if

E[R(a)] ≥ r∗ − ε.

One of the most common learning objectives is to find an
ε-optimal arm with high probability.

Definition 2. An algorithm is called an (ε, δ)-PAC (probably
approximately correct) algorithm for the multi-armed bandit
problem with sample complexity T , if it outputs an ε-optimal
arm with probability at least 1 − δ when it terminates, and
the number of steps the algorithm performs until termination
is bounded by T .

An (ε, δ)-PAC algorithm is known for the case of binary
rewards, called Median Elimination [3].

Statement 1. The Median Elimination algorithm is an (ε, δ)-
PAC algorithm and its sample complexity is

O
(

n

ε2
log

1

δ

)
.

In [4] an O
(
(n/ε2) log(1/δ)

)
lower bound is provided on

the expected number of trials under any policy that finds an
ε-optimal arm with probability at least 1− δ.

Algorithm 1 Median Elimination
Input: ε > 0, δ > 0
Output: an arm which is ε-optimal with probability at least
1− δ
Set S1 = A, ε1 = ε/4, δ1 = δ/2, ℓ = 1.
repeat

Sample every arm a ∈ Sℓ for 1/(εℓ/2)2 log(3/δℓ) times,
and let p̂ℓa denote its empirical value
Find the median of p̂ℓa, denoted by mℓ

Sℓ+1 = Sℓ \ {a : p̂ℓa < mℓ}
εℓ+1 = 3

4εℓ, δℓ+1 = δℓ/2, ℓ = ℓ+ 1
until |Sℓ| = 1

III. SUBGAUSSIAN RANDOM VARIABLES

More information about subgaussian random variables and
the proof of Statement 2 can be found in [2].

Definition 3. A random variable X is σ-subgaussian if for
all λ ∈ R :

E[exp(λX)] ≤ exp(λ2σ2/2).

Statement 2. Assume that Xi − µ are independent, σ-
subgaussian random variables. Then for any ε > 0,

P(µ̂ ≥ µ+ ε) ≤ exp

(
−nε2

2σ2

)
,

P(µ̂ ≤ µ− ε) ≤ exp

(
−nε2

2σ2

)
where µ̂ = 1

n

∑n
i=1 Xi.

Remark 1. For random variables that are not centred
(E[X] ̸= 0), the notation is abused by saying that X is
σ-subgaussian if the noise X − E[X] is σ-subgaussian. A
distribution is called σ-subgaussian if a random variable
drawn from that distribution is σ-subgaussian.

IV. ARMS WITH A SPECIAL STRUCTURE

In this section we will consider a new problem that has
not yet been investigated. This special case of the multi-
armed bandit problem also arises in practice, for example the
quantized estimation problem studied in [5] leads to a bandit
problem of this kind.

The assumptions on the arms are the following:

Assumption 1. There are n = 2m+1, m ≥ 1 arms numbered
from 0 to 2m: a0, a1, ..., a2m .
(The expectation of arm ai will be denoted by µi.)
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Assumption 2. There exists a k ∈ {0, 1, ..., 2m} such that

µ0 < µ1 < ... < µk−1 < µk > µk+1 > µk+2 > ... > µ2m .

Assumption 3. There exists a ∆ > 0 such that

|µi+1 − µi| ≥ ∆ ∀ i ∈ {0, 1, ..., 2m − 1},

and it is known in advance.

Assumption 4. The arms are 1-subgaussian.

Algorithm 2
Input: δ > 0
Output: an arm which is optimal with probability at least
1− δ
Set S1 = A, δ1 = δ/2, ℓ = 1.
while |Sℓ| > 1 do

Sample the three arms: aj , j ∈ {i · 2m−ℓ−1, i = 1, 2, 3}
nℓ = ⌈log(4/δℓ)/(22m−2ℓ−5∆2)⌉ times each, and let µ̂ℓ

j

denote their empirical values
i∗ℓ = argmaxj µ̂

ℓ
j

Sℓ+1 =
{
ai : i

∗
ℓ − 2m−ℓ−1 ≤ i ≤ i∗ℓ + 2m−ℓ−1

}
Renumber the arms from 0 to 2m−ℓ

δℓ+1 = δℓ/2, ℓ = ℓ+ 1
end while
Sample each of the three remaining arms aj , j ∈ {0, 1, 2}
nm = ⌈log(4/δm)/(2−3∆2)⌉ times, and let µ̂m

j denote their
empirical values
i∗m = argmaxj µ̂

m
j

return ai∗m

Theorem 1. Under Assumptions 1-4, Algorithm 2 finds the
optimal arm with probability at least 1 − δ and its sample
complexity is

O
(
log n+

1

∆2
log

n

δ

)
.

Lemma 1. For every phase ℓ = 1, 2, ...,m− 1:

P
(
max
j∈Sℓ

µj > max
i∈Sℓ+1

µi

)
≤ δℓ.

Proof. Let i∗ = argmaxj∈Sℓ
µj . We have to show that:

P (ai∗ /∈ Sℓ+1) ≤ δℓ.

The ai∗ /∈ Sℓ+1 if and only if |i∗ − i∗ℓ | > 2m−ℓ−1, so:

P (ai∗ /∈ Sℓ+1) = P
(
|i∗ − i∗ℓ | > 2m−ℓ−1

)
=

3∑
i=1

[
P(|i∗ − i∗ℓ | > 2m−ℓ−1 | i∗ℓ = i · 2m−ℓ−1)

· P
(
i∗ℓ = i · 2m−ℓ−1

) ]
The value of P

(
|i∗ − i∗ℓ | > 2m−ℓ−1 | i∗ℓ = i · 2m−ℓ−1

)
is

either 0 or 1 and it is 0 for at least one value of i ∈ {1, 2, 3}.
We have to give an upper bound on P

(
i∗ℓ = i · 2m−ℓ−1

)
when

|i∗ − i · 2m−ℓ−1| > 2m−ℓ−1. We will show that in this case
P
(
i∗ℓ = i · 2m−ℓ−1

)
≤ δℓ/2 and from this the statement of the

lemma follows.

First we deal with the case when i∗ > i · 2m−ℓ−1.
Let j = (i+ 1) · 2m−ℓ−1 and i′ = i · 2m−ℓ−1.
With these notations: i∗ > j > i′ =⇒ µi∗ > µj > µi′ ,
because i∗ is the index of the optimal arm in Sℓ and based on
Assumption 2 the arms satisfy that

µ0 < µ1 < ... < µi∗ > ... > µ2m+1−ℓ .

Since j− i′ = 2m−ℓ−1, from Assumption 2 and 3 follows that

µj ≥ µi′ + 2m−ℓ−1∆.

From the definition of i∗ℓ follows that if i∗ℓ = i′ then µ̂ℓ
i′ ≥ µ̂ℓ

j .
This way: P(i∗ℓ = i′) ≤ P(µ̂ℓ

i′ ≥ µ̂ℓ
j).

Consider the following events:

A = {µ̂ℓ
j > µj − 2m−ℓ−2∆}

B = {µ̂ℓ
i′ < µi′ + 2m−ℓ−2∆}

C = {µ̂ℓ
j > µ̂ℓ

i′}

It is easy to see that A ∧B =⇒ C :

µ̂j > µj − 2m−ℓ−2∆

≥ µi′ + 2m−ℓ−1∆− 2m−ℓ−2∆

= µi′ + 2m−ℓ−2∆

> µ̂i′

This implies that:

P(i∗ℓ = i′) ≤ P(µ̂ℓ
i′ ≥ µ̂ℓ

j) = P(C) ≤ P(A ∨B) ≤ P(A) + P(B).

It remains to show that P(A) ≤ δℓ/4 and P(B) ≤ δℓ/4:

P(A) = P(µ̂ℓ
j ≤ µj − 2m−ℓ−2∆)

≤ exp

(
−1

2
(2m−ℓ−2∆)2

⌈
log(4/δℓ)

22m−2ℓ−5∆2

⌉)
≤ exp

(
−1

2
(2m−ℓ−2∆)2

log(4/δℓ)

22m−2ℓ−5∆2

)
= δℓ/4.

Similarly,
P(B) ≤ δℓ/4.

The case when i∗ < i · 2m−ℓ−1 can be proved similarly.

Lemma 2. For the final phase:

P(max
j∈Sm

µj > µi∗m
) ≤ δm.

Proof. Let i∗ = argmaxj∈Sm
µj . We have to show that

P (i∗ ̸= i∗m) ≤ δm.

P(i∗ ̸= i∗m) =

2∑
j=0

P(i∗ ̸= i∗m | i∗m = j)P(i∗m = j)

The value of P(i∗ ̸= i∗m | i∗m = j) is either 0 or 1 and it is 1
exactly for two values of j. We prove that P(i∗m = j) ≤ δm/2
when j ̸= i∗ and that proves the lemma.
By the definition of i∗m: if i∗m = j then µ̂m

j ≥ µ̂m
i∗ . This way:

P(i∗m = j) ≤ P(µ̂m
j ≥ µ̂m

i∗)
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By the definition of i∗ : µj ≤ µi∗ −∆.
Consider the following events:

A = {µ̂m
i∗ > µi∗ −∆/2}

B = {µ̂m
j < µj +∆/2}

C = {µ̂m
i∗ > µ̂m

j }
It is easy to see that A ∧B =⇒ C:

µ̂m
i∗ > µi∗ −∆/2

≥ µj +∆−∆/2

= µj +∆/2

> µ̂m
j .

This implies that:

P(i∗m = j) ≤ P(µ̂m
j ≥ µ̂m

i∗)

= P(C)

≤ P(A ∨B)

≤ P(A) + P(B).

It remains to show that P(A) ≤ δm/4 and P(B) ≤ δm/4:

P(A) = P(µ̂m
i∗ ≤ µi∗ −∆/2)

≤ exp

(
−1

2
(∆/2)2

⌈
log(4/δm)

2−3∆2

⌉)
≤ exp

(
−1

2
(∆/2)2

log(4/δm)

2−3∆2

)
= δm/4.

Similarly,
P(B) ≤ δm/4.

Lemma 3. The sample complexity of Algorithm 2 is

O
(
log n+

1

∆2
log

n

δ

)
.

Proof. The number of arm samples in the ℓ-th round is 3nℓ.
m∑
ℓ=1

3nℓ ≤ 3

m∑
ℓ=1

⌈
log (4/δℓ) /

(
22m−2ℓ−5∆2

)⌉
≤ 3m+ 3

m∑
ℓ=1

log (4/δℓ) /
(
22m−2ℓ−5∆2

)
= 3m+ 3

m∑
ℓ=1

log
(
2ℓ+2/δ

)
/
(
22m−2ℓ−5∆2

)
= 3m+

3

22m−5∆2

(
m∑
ℓ=1

22ℓ log
(
2ℓ+2/δ

))

≤ 3m+
3

22m−5∆2
log
(
2m+2/δ

) m∑
ℓ=1

22ℓ

≤ 3m+
3

22m−5∆2
log
(
2m+2/δ

) 22m+2

3
= 3m+ 128∆−2 log

(
2m+2/δ

)
= O

(
log n+

1

∆2
log

n

δ

)
.

Remark 2. In the general case when 2m−1+1 < n ≤ 2m+1
we can do the following:
At first update the indices:

i←− i+

⌊
2m + 1− n

2

⌋
.

This way we can sample the arms

aj , j ∈ {i · 2m−2, i = 1, 2, 3}.

Sample all of them n1 = ⌈log(8/δ)/(22m−7∆2)⌉ times. Let
µ̂1
j denote their empirical values and let i∗1 = argmaxj µ̂

1
j .

Keep the 2m−1 + 1 arms closest to the arm ai∗1 , the set of
these arms will be S2. Renumber the arms from 0 to 2m−1.
Set δ2 = δ/4 and ℓ = 2. After that we can continue with the
second round of Algorithm 2.

V. CONCLUSION

A structured multi-armed bandit problem has been analyzed,
in which the optimal arm could be found using the Median
Elimination algorithm (by choosing ε < ∆), however the
provided new algorithm finds the optimal arm much faster,
with a sample complexity of

O
(
log n+

1

∆2
log

n

δ

)
instead of

O
(

n

∆2
log

1

δ

)
.

There are still many interesting problems that require further
investigation including the case of infinitely many arms with a
similar structure and the two-dimensional case when the arms
are located on a grid.
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