Stochastic Recursive Optimization: A Structured Multi-Armed Bandit Problem

Roland Szögi
Supervisor: Balázs Csanád Csáji

Multi-Armed Bandits

- The multi-armed bandit model consists of a set of $\operatorname{arms} \mathcal{A}(n=|\mathcal{A}|)$.
- To every arm $a \in \mathcal{A}$ belongs a distribution $\nu(a)$.
- In each round an arm $a \in \mathcal{A}$ is chosen and a reward $R(a)$ is sampled from distribution $\nu(a)$.
- An arm is called optimal, if it has the highest expected reward among all of the arms.
- The goal is to identify the optimal arm.

FURTHER ASSUMPTIONS

1. There are $n=2^{m}+1, m \geq 1$ arms numbered from 0 to $2^{m}: a_{0}, a_{1}, \ldots, a_{2}{ }^{m}$. (The expectation of arm a_{i} will be denoted by μ_{i}.)
2. There exists a $k \in\left\{0,1, \ldots, 2^{m}\right\}$ such that

$$
\mu_{0}<\mu_{1}<\ldots<\mu_{k-1}<\mu_{k}>\mu_{k+1}>\mu_{k+2}>\ldots>\mu_{2^{m}} .
$$

3. There exists a $\Delta>0$ such that

$$
\left|\mu_{i+1}-\mu_{i}\right| \geq \Delta \quad \forall i \in\left\{0,1, \ldots, 2^{m}-1\right\}
$$

and it is known in advance.
4. The arms are 1 -subgaussian.

Definition 2.1

A random variable X is σ-subgaussian if for all $\lambda \in \mathbb{R}$:

$$
\mathbb{E}[\exp (\lambda X)] \leq \exp \left(\lambda^{2} \sigma^{2} / 2\right) .
$$

Algorithm

```
Input: \(\delta>0\)
Output: an arm which is optimal with probability at least \(1-\delta\)
    Set \(S_{1}=\mathcal{A}, \delta_{1}=\delta / 2, \ell=1\).
    while \(\left|S_{\ell}\right|>3\) do
        Sample the three arms: \(a_{j}, j \in\left\{i \cdot 2^{m-\ell-1}, i=1,2,3\right\}\)
        \(n_{\ell}=\left\lceil\log \left(4 / \delta_{\ell}\right) /\left(2^{2 m-2 \ell-5} \Delta^{2}\right)\right\rceil\) times each, and let \(\hat{\mu}_{j}^{\ell}\) denote their empirical values
        \(i_{\ell}^{*}=\arg \max _{j} \hat{\mu}_{j}^{\ell}\)
        \(S_{\ell+1}=\left\{a_{i}: i_{\ell}^{*}-2^{m-\ell-1} \leq i \leq i_{\ell}^{*}+2^{m-\ell-1}\right\}\)
        Renumber the arms from 0 to \(2^{m-\ell}\)
        \(\delta_{\ell+1}=\delta_{\ell} / 2, \ell=\ell+1\)
    end while
    Sample each of the three remaining arms \(a_{j}, j \in\{0,1,2\}\)
    \(n_{m}=\left\lceil\log \left(4 / \delta_{m}\right) /\left(2^{-3} \Delta^{2}\right)\right\rceil\) times, and let \(\hat{\mu}_{j}^{m}\) denote their empirical values
    \(i_{m}^{*}=\arg \max _{j} \hat{\mu}_{j}^{m}\)
    return \(a_{i_{m}^{*}}\)
```


Theorem 1

Under the assumptions, the algorithm finds the optimal arm with probability at least $1-\delta$ and its sample complexity is

$$
\mathcal{O}\left(\log n+\frac{1}{\Delta^{2}} \log \frac{n}{\delta}\right)
$$

General Case

In the general case when $2^{m-1}+1<n \leq 2^{m}+1$ we can do the following:

1. Update the indices:

$$
i \leftarrow i+\left\lfloor\frac{2^{m}+1-n}{2}\right\rfloor .
$$

2. Sample the arms $a_{j}, j \in\left\{i \cdot 2^{m-2}, i=1,2,3\right\}, n_{1}=\left\lceil\log (8 / \delta) /\left(2^{2 m-7} \Delta^{2}\right)\right\rceil$ times each.
3. Let $\hat{\mu}_{j}^{1}$ denote their empirical values and let $i_{1}^{*}=\arg \max _{j} \hat{\mu}_{j}^{1}$.
4. Keep the $2^{m-1}+1$ arms closest to the arm $a_{i_{1}^{*}}$.
5. Renumber the arms starting from 0.
6. Continue with the algorithm.

CONCLUSION

In the special case I have investigated, the optimal arm could be found using the Median Elimination algorithm, however this new algorithm finds the optimal arm much faster, with a sample complexity of

$$
\mathcal{O}\left(\log n+\frac{1}{\Delta^{2}} \log \frac{n}{\delta}\right)
$$

instead of

$$
\mathcal{O}\left(\frac{n}{\Delta^{2}} \log \frac{1}{\delta}\right)
$$

Thank You For Your Attention!

