
Modeling Project Work 2

Optimization of the Picking Process in
Inventories

Le Phuong Quynh

Supervisor: Dr. Jüttner Alpár
Péter Madarasi

December 8, 2020

1



1 Introduction

Order picking, the process of retrieving items from their storage locations to fill

customer orders, is known as the most time consuming and laborious component

of the warehouse activities. The project aim to simulate this process in the

warehouse. More specifically, picker-to-parts systems (i.e, the order picker travels

along the aisles to retrieve products) are considered, as these systems account

for the large majority of all order picking systems in Western Europe. We

initially use several assumptions in order to make the model simple and easy to

construct. However, since we also aim to real-life applications, some of those

assumptions can be relaxed later on.

This report is organized as follows. In the section 2, project overview and

objectives, the author quickly remarks what has been done in the previous

project work and states a scope of work for this project. In section 3, set up and

block diagram of the programming part are presented. In addition, I also briefly

introduce object oriented program which is the main improvement in this

project work. After setting up code with sample data sets, some evaluations and

virtual analysis will be presented in section 4.

2 Project Overview and Objectives

Previous work

In the last semester, I had introduced simple activities in the warehouse and an

optimizing problem: to reduce working time inside warehouse by avoiding

collisions in picking products process. I also implemented a programming work

by Python language to simulate the simple picking process using ”first come first

serve” rule, together with a source code to generate random data sets for testing
purpose.

In the simple set up inside warehouse, there is a number of locations where

products are placed. A worker working inside warehouse reaches the locations in

an order given by customers’ requirements. A collision may arise when at a

moment there are two or more workers wanting to get product at the same

place. ”First come first serve” rule states that a worker who comes first will have

priority and all others need to wait until this man leaves. A result in my

previous work shows that a raise in number of workers may reduce total

processing time inside warehouse (with the same given customers’ orders). It is

not always true since the more people the more collisions they might have, in

that cases we will encounter the problem of increasing delay time.

However, by practical testing, the old source code shows several bugs leading to

a serious problem. In the case of big collisions, i.e the waiting time is required

long, the code does not shift the delay time for each worker correctly then lead

1



to a wrong in order of taking tasks. Since each task is ordering by customers’

requirements, pickers are desired to complete a whole task before move to the

next one. Therefore, fixing bugs is an urgent mission in this following project. In

addition, project also contains some updates in programming methodology and

evaluations.

Scope of work

In this semester, my work is divided into three main parts including:

First, as mentioned above, fixing bugs is the most important task before having

to any further improvement.

Second, cleaning code and implementing object oriented program (OOP).

Third, evaluating the results. Here we still use the same old source to generate

random data sets, however, it is expected to have more values being used to

evaluate and analyze.

3 Set up

Basic Conditions

The system based on the following assumptions to simulate:

1. There are variety of goods in the system. Each location in the warehouse can

have only one type of goods. The demand for a variety of goods is fixed and

known, at this time we also assume that we need not to care about the amount

of goods in stock, i.e, the remaining goods always exceeds demand.

2. To simplify the processing, here have only one speed for all workers, said a

maximum speed. Moreover, except the collision mentioned at the beginning, we

consider all other traffic jams during working time are neglectable. It helps us to

have a fixed information of traveling time between any two locations.

3. Picker to Order: the picker is responsible for collecting items related to an

order. With a detailed list of the items to be collected, the picker travels to the

locations where the goods are stored, picks the needed amount and move the the

next location. After finishing an order, the picker comes back to the starting

point to leave items for packaging and delivery process then get a new order

here.

Programming Set Up

Develop a Controller class to hold a dictionary of pickers and their picking

processes in the warehouse

- A dictionary is initially empty.

- Picker takes an order from big task according to a policy, new order is taken

only if the previous order is done.

2



- Picker can be looked up by key in the dictionary, which is numbered from 1.

- A value in dictionary is the process of that picker from the start to the end

including locations, arriving and leaving time that locations and waiting time if

collision happens.

- User can look up a location at a time to check if there is any collision.

Order picking simulation allows calculating and analyzing all activities

performed by pickers. The algorithm calculates the status duration of pickers

(e.g, traveling time, picking up time, waiting time). The given status time is

used to estimate the total order picking time. Simplified form of algorithm for

each picker is presented below:

In this report, I implemented 3 new policies for choosing the next order for a

picker. All of three policies will consider the time point where a picker has

finished the previous task and already comeback to the starting location.

At that specific time point, we can check for every location that if it is

occupying by other pickers or not. If yes, we can calculate the time needed till

3



that location would be free, which is call estimated queuing time. For each

order, there is a set of given locations then we can compute sum of queuing time

from those locations. For policy 1, chosen order is the one has this number

minimum.
For the next case of choosing order, we choose the minimum average queuing

time, i.e, we take sum of queuing time divide by number of locations contained

in that order and choose the one has min result.
Moreover, it makes sense that we can compare these queuing time with the

estimated processing time of an order (total time a worker will need if we get rid

of all collisions). Thus, for the third policy, we choose the order has the smallest

ratio.
The policy 0 is simply the case of choosing a random order from list of given

orders.

4 Evaluations and Analysis

We use a sample including 185 orders, 20 locations applying to policies 1, 2 and

3. We also change pickers in range from 10 to 25 people to see the trend of

picking process if we increase or decrease the number of workers. The result is

sum up by tables below:

Figure 1: Processing time of picking process with respect to number of workers

In Figure 1, we care about the processing time of picking process that means the

time from beginning till the last worker finished his jobs. It is clearly to see that

the process time will lessen if there are more workers since we are considering

4



Figure 2: Total delayed time of all workers

one unchanged sample task. However, it is also pointing out that this value has

no significant difference between different policies.

In Figure 2, we consider the total delayed time of workers, that is sum of waiting

time that each picker needs to spend during their work. We can see the similar

trend between all policies that if we increase number of pickers, there will be

more collisions so increase the delayed time. In this simulation, picking processes

according to policy 1, 2 and 3 show better performance in comparison with

policy 1 when number of workers increases. We still have not seen an

outstanding result getting from policy 1, 2 or 3. The problem may raise from

inside the algorithm, we just consider estimated queuing time at one time point.

However, in fact, when picker gets to those ”crowded” locations, all collisions

may already disappear. The algorithm now can not predict this reality situation.

5 Conclusions

Order picking is often considered as the most crucial warehouse activity. Any

inefficiency in order picking can lead to unsatisfactory service and high

operational cost for its warehouse.

The simulation system is considered in this project is a simple one. We can

extend it in many directions. Planning for the next semester, I will keep

continuing improve the algorithms for more realistic calculating collisions.

5


