
Solution of PDEs using neural networks
Individual project III

Miskei Ferenc István

22 December, 2022

1 Introduction

Solving partial differential equations (PDEs) is an essential field in applied sciences such as physics,
chemistry and engineering. However, finding exact solutions to PDEs that emerge in applications is
often impossibly difficult, and we therefore must resort to the use of numerical methods.

A relatively new approach to solving PDEs is the application of neural networks (NNs or neural
nets), which has a number of benefits. Multilayer feedforward neural networks can be used as
universal approximators to functions defined on compact subsets of finite dimensional real spaces
(see [6], [1]). Furthermore, once a neural net is trained to give an approximate solution to a PDE
using some input parameters (such as a boundary condition, source function values, etc.), the solution
of further PDEs of the same type is reduced to evaluating the NN on different parameters.

Of course, one obvious issue with training a neural network to solve a PDE is that a large
number of already solved PDEs of the same type would be required for the training phase, which
could render the whole procedure useless. A new idea within the established framework is the use
of Green functions of the differential operator instead. [3]

This project builds upon a previous one that focused on Laplace’s equation with Dirichlet bound-
ary condition on a nontrivial compact polygon utilizing the Green functions of the two dimensional
Laplacian (∆). [2] Based on this, so far we have managed to generalize said approach further to
a different problem: Poisson’s equation with Dirichlet type boundary condition, and another one
(Laplace’s equation with non-linear boundary condition) is currently being implemented.

2 Introducing the method: Laplace’s equation with Dirichlet
boundary condition

2.1 Definition of the setup

The starting point of this project is the following working algorithm.
Let Ω ⊂ R2 be an open set, as shown in Figure 1, and g ∈ C(∂Ω,R). Consider the following
boundary value problem: {

∆u(x) = 0, if x ∈ Ω,

u(x) = g(x), if x ∈ ∂Ω.
(1)

We are interested in the values {u(xi)}Ii=1, where X = {xi}Ii=1 are in this case the I = 3 ’dark
orange’ points inside the domain. To approximate {u(xi)}Ii=1, define the following auxiliary sets:

{Y = yj}Jj=1 ⊂ extΩ Z = {zk}Kk=1 ⊂ ∂Ω

1

“border training points” and “circumference training points”.

Figure 1: Domain of the first problem

The Green function for the two dimensional Laplacian operator is G(x,y) = − 1
2π ln ∥x − y∥2.

Now, let us train a neural network – whose architecture will be specified later – such that

NN :
(
G(zk,yj)

)K
k=1︸ ︷︷ ︸

∈RK

7→
(
G(xi,yj)

)I
i=1︸ ︷︷ ︸

∈RI

(∀yj ∈ Y). (2)

Then, we define the numerical approximation as

ũ : RK → RI , (ũ(xi))
I
i=1 := NN

(
(g(zk))

K
k=1

)
(3)

What this means is that we shift J copies of the Green function such that their singularities are
outside of the domain Ω, evaluate them at the boundary points {zk}Kk=1 and the inner points of
interest {xi}Ii=1. The NN is trained such as to return the function values in the inner points given
the function values on the boundary.

In another words, the NN learns to predict the values inside the domain given the values on the
boundary, which is really the question in (1).

This is essentially an interpolation problem, where we impose ∆u = 0 by only picking functions
that already satisfy this criterion (specifically the Green functions of ∆). An interesting question for
further research – perhaps as part of my complete thesis – is how the inclusion of other harmonic
functions in this setup influence the properties of the solutions obtained this way.

2

2.2 The architecture of the NN and results

[2] approached the above described problem as follows. The NN trained as in (2) will clearly learn
to approximate a specific linear map from L(RK ,RI). [2] sets up an NN without any kind of biases
or non-linearities. Not using any non-linearities is a sensible step, given that (1) is a linear boundary
value problem. The exclusion of biases of course means that a homogeneous Dirichlet type boundary
condition implies that u ≡ 0. This is of course true in the case of (1).

All the tests were done with I = 3, J = 95, K = 18, train-test split ratio = 0.9, batch size = 32
(which is ≈ 15% of the total number of data) and loss function =MSE. Further parameters of the
NN include the optimizer method (and its own specific parameters), learning rate and number of
epochs.

Their approach achieves the following numerical estimation properties with respect to these three
variables: choice of opitimizer, learning rate and number of epochs.

The exact values to be estimated are u(x1) = −21, u(x2) = 0 and u(x3) = 39, and the relative
error is calculated as:

ep =
∥
(
u(x1)− ũ(x1), u(x2)− ũ(x2), u(x3)− ũ(x3)

)
∥p

∥
(
u(x1), u(x2), u(x3)

)
∥p

The following table includes the results of some of the experiments:

optimizer learning rate epochs e1 e2 e∞
Adam 0.1 1,000 0.7358 0.7345 0.7851
Adam 0.01 1,000 8.4109× 10−2 7.8732× 10−2 7.3069× 10−2

Adam 0.01 5,000 6.9011× 10−2 7.0638× 10−2 7.5214× 10−2

Adam 0.01 10,000 7.9641× 10−2 7.2514× 10−2 7.5266× 10−2

Adam 0.001 1,000 100+ 100+ 100+
Adam 0.001 5,000 7.005× 10−3 7.285× 10−3 7.6783× 10−3

Adam 0.001 10,000 5.032× 10−3 4.342× 10−3 4.018× 10−3

SGD 0.001 1,000 1.2421 0.9722 0.6726
SGD 0.001 5,000 1.5755× 10−2 1.4383× 10−2 1.4402× 10−2

SGD 0.001 10,000 1.1992× 10−2 1.21523× 10−2 1× 10−2

Of course, there are much faster and more accurate deterministic algorithms to determine the
coefficients of 52× 3 a matrix.

As we can see, the model does in fact seem to converge to the desired solution, even if this
convergence is not optimal yet. Manuscript [3] shows that the method would indeed converge.

Theorem 1 Suppose that the points Y = {yj}Jj=1 equally spaced around the domain, and their
distance from the domain is above a particular positive constant. Then, the approximation

ũ(x) :=

J∑
j=1

ajG(x− yj) :=

J∑
j=1

ajGyj
(x)

provides the convergence rate

min
(a1,...,aN)T∈RJ

{
sup
x∈Ω

|u(x)− ũ(x)|+ sup
x∈Ω

|∇(u(x)− ũ(x))|
}

≲ h, (4)

3

We also have
min

(a1,...,aN)T∈RJ
∥u− ũ∥H1(Ω) ≲ h. (5)

One of the goals of this project is to make empirical measurements in the case of different PDEs
with similar methods.

3 Poisson’s equation with Dirichlet type boundary condition

After our investigation of Laplace’s equation, we turn our attention towards one of the more obvious
directions of generalization: Poisson’s equation. (Of course, we could generalize in the direction of
increasing the dimension of the domain as well, or changing the type of the boundary condition, the
latter of which we are going to do in Section 4.)

The first remark is of course that we probably cannot omit the use of functions whose Laplacian
vanishes everywhere inside the domain, since the linear combination of such functions also has a
Laplacian that vanishes everywhere inside the domain.

3.1 Definition of the setup

Let Ω ⊂ R2 be an open set, as shown in Figure 2, f ∈ C(Ω,R) and g ∈ C(∂Ω,R). Consider the
following boundary value problem:{

∆u(x) = f(x), if x ∈ Ω,

u(x) = g(x), if x ∈ ∂Ω.
(6)

We are interested in the values {u(xi)}Ii=1, where X = {xi}Ii=1 are the I = 15 ’spring green’
points in the inside. To approximate these values, let us define the following auxiliary sets:

Y = {yj}Jj=1 ⊂ extΩ Z = {zk}Kk=1 ⊂ ∂Ω W = {wl}Ll=1.

Here, the ”border distance” is 0.005, meaning that every point in Z is 0.005 units away from ∂Ω. It
might appear that the singularities of the Green functions are too close to the boundary this way,
but in fact, − 1

2π ln 0.005 ≈ 0.8433, meaning that there is barely any elevation there. The diameter

of the domain is 5
√
2, so the variance of the Green function over the two most distant points is

approximately 1.1546.
The exact solution chosen to be

u(x, y) = xy sin(x+ y2)︸ ︷︷ ︸
∆(...):=f

+x5 − 10x3y2 + 5xy4︸ ︷︷ ︸
∆(...)=0

,

and the exact solutions at the points of X are(
u(xi)

)15
i=1

=
(
−468.34,−420.25,−224.78, 31.685, 215.65, 267.86, 225.76, 149.92,

73.672, 8.265,−49.81,−111.43,−188.82,−289.09,−398.99
)
,

which visibly has a significant variance.
Now, the task of the numerical approximation is to find a map A, for which

A
((
f(wl)

)L
l=1

,
(
g(zk)

)K
k=1

)
≈

(
u(xi)

)I
i=1

.

4

Figure 2: Domain of the second problem

What this means is that given the source values f(wl) in the interior of the domain and the boundary
values g(zk), the mapping A is able to predict the function values u(xi) in the interior points.

Now, it is clear that due to the linearity of (6), any solution can be decomposed as u = u1 + u2,
where u1 and u2 satisfy

{
∆u1(x) = f(x), if x ∈ Ω,

u1(x) = 0, if x ∈ ∂Ω.
(7)

{
∆u2(x) = 0, if x ∈ Ω,

u2(x) = g(x), if x ∈ ∂Ω.
(8)

This suggests that we might obtain a solution by decomposing A into A(u,v) = A1(u) + A2(v) as
well, where A1 approximates u1 and A2 approximates u2. Of course, both A1 and A2 would be
linear maps (from different spaces) to RI .

Although this remark has the opportunity to reduce the numerical costs in the case of linear
PDEs, our ultimate goal is to give a method that converges in the case of non-linear PDEs also.
Perhaps we might chase this line of thought in the future (maybe as part of my complete thesis).
For now, we build the NN such that its application should generalize easier to non-linear PDEs.

5

3.2 The architecture of the NN and preliminary results

Now, we take the input-output pairs as before:

NN :
(
0, G(zk,yj)

K
k=1

)︸ ︷︷ ︸
∈RL+K

7→
(
G(xi,yj)

)I
i=1

(∀yj ∈ Y), (9)

however, we also need to take input-output pairs for which the Laplacian in the inside is nonzero.
Our choice fell on the inverse multiquadric radial functions of the form Ψ(r) := (1 + r2)−1/2, as

suggested by [5]. Here, ∆(x,y)ψ(r) = 2+r2

(1+r2)5/2 . It is important to note that this function has no

singularities at all, and only has a total variation of 1, while its Laplacian has a total variation of 2.
The input-output pairs belonging for this radial basis function take the form

NN :
((

∆ψ(∥wl − yj∥2)
)L
l=1

,
(
ψ(∥zk − yj∥2)

)K
k=1

)
7→

(
ψ(∥xi − yj∥2)

)I
i=1

(∀yj ∈ Y), (10)

At first, we picked a relatively small number of points: K = 302 boundary points and L = 312
inner training points. Since this will mean a total number of I · (L + K) = 9,210 parameters in
the model, and we will attempt to find A ∈ L(RL+K ,RI) it made sense to try and match the size
of the training data to around 9,000. Therefore, we picked 32 separated boundary points for every
boundary points, plus two extra points where the gap between consecutive elements of Z would have
been too large: J = 9662.

Attempting the same NN parameters as the one that resulted in the most succesful (one dense
linear layer, learning rate = 0.001 no bias, 10,000 epochs, batch size = 3, 000 – which is about 15%
of the training data set) as in the first case yields a very noisy learning curve and poor numerical
results (about 50% relative error)

Figure 3: First trial on Poisson’s equation

There are directions in which one might try to improve the result of this experiment:

• increasing batch size to decrease oscillations,

• changing the architecture of the NN to enable more parameters, thus increasing the complexity
of the model.

6

• increasing the size of the training data to improve convergence speed,

• increasing the number of separated boundary points and decreasing the border distance to
perhaps enable a better overall attainable accuracy.

3.3 Increasing the batch size

The next few figures show results of experiments with the exact same parameters only with the
batch size changed. Note that each of these experiments have been tried a few times (3-4), and
these are typical results in each case.

Figure 4: Increasing the batch sizes

It appears that increasing the batch size has a noticeable effect at smoothing the learning curves,
and slightly decreasing the time necessary for the learning process to be completed. Moreover,
it does seem like that there is a slight tendency of decreasing accuracy with increasing the batch
size, however, this tendency cannot be deemed significant, as such high relative error rates are
unacceptable anyway.

7

Considering the apparent slight decrease in accuracy, however, we will be attempting to eliminate
the roughness of the learning curves by further decreasing the learning rate, while setting the batch
size at about 50% of the total data set.

3.4 Increasing the number of measurement points and the complexity of
the architecture

At this high levels of relative error, it is exceedingly difficult to say anything definitive with respect
to the accuracy of the model. Therefore, we now turn our attention to improving the accuracy as
much as possible. This will be done on two fronts:

• increasing J and decreasing the border distance,

• increasing the complexity of the model: including another hidden layer, including biases.

Furthermore, we decrease the learning rate to 0.0001 in order to attain smoother learning curves.
In the following experiments, the data has the following parameters:

• border distance = 0.0005 (maxz∈Z,y∈Y |G(z,y)| = − 1
2π ln 0.0005 ≈ 2.42)

• J = 38,577 separated boundary points, (dist(zj , zj+1) ≈ 2−11 ≈ 0.000488 ≈ border distance,

• K = 1,206 boundary points, and

• L = 1,264 inner training points.

Given these parameters, we have 2J = 77,154 input-output pairs from R2470×R15, which is a 37,050
dimensional space of linear maps. At face value, this would mean that we have an overdetermined
system, which could be problematic if we only include 37,050 parameters in the NN. However, this
over abundance of data points will come in handy in the case of more complicated NN structures.

With these remarks in mind, we will be using another hidden layer with L+K = 2,470 neurons.
Moreover, we also include a potential bias in both layers. The increasing running time requires that
we use a smaller number of epochs. Here, we will be training the model for 3,000 epochs. The first
preliminary result is shown in figure 3.4.

The roughness of the learning curve is consistent with the batch size of 50%, however it is worth
pointing out two facts:

8

1. this model achieved the same ’accuracy’ in just 3,000 epochs

2. here seems to be a qualitative difference in the shape of the learning curve (downward convex
decline) suggesting that teaching the model further would result in much higher accuracy.

At this point, the model has 6,140,420 parameters and is trained on 77,154 data points. Therefore
increasing the number of epochs further or decreasing the batch size results in experiments that have
a very long running time, however, we give the result of two such further experiments: see figure for
these two experiments.

Both experiments were run with the same NN architecture (one hidden layer with 2,470 neurons,
with biased linear activation before and and an unbiased linear activation after the hidden layer, and
the learning rate is still 0.0001). The left plot shows a case of 3,000 epochs with batch size 2,048,
while the right hand side plot shows the results of an experiment run for 3,000 epochs with a batch
size further decreased to 512.

Figure 5: picking batch sizes of 1,024 and 512 respectively

These two experiments indicate that a convergence theorem similar to 1 might hold in the case
of Poisson’s equation also. However, further experiments with different border distance values and
h = dist(yj ,yj+1) values need to be done in order to investigate the nature of this convergence.

Research questions for the Thesis:

1. What NN structure and optimization method is best suitable for solving these kinds of prob-
lems? How can we obtain methods that have a more sensible running time – both for further
experiments and application purposes.

2. What is the nature of the convergence hinted at by the above experiments? (Further experi-
ments and perhaps even theoretical work to be done here.)

3. Can we show – either empirically, or theoretically – a better than O(h) rate of convergence in
the case of Laplace’s equation?

4. How might we further generalize the class of problems for which this method applies? One
such setup is described in the last subsection.

5. How can we use the results obtained here in sensible applications? Can we perhaps use a
trained NN to perform time-steps in a time-dependent setup?

9

4 Laplace’s equation with non-linear boundary condition

So far we have only applied our method to linear PDEs. However, the great potential of the universal
approximator property – as compared to the traditional methods – lies in the application of this
method to non-linear PDEs. Therefore one further problem modelling steel corrosion in concrete –
suggested by [4] – for which we wish to apply this method, and draw both empirical and theoretical
conclusions is the following.

Let Ω =
(
−W

2 ,
W
2

)
×
(
−H

2 ,
H
2

)
⊂ R2 be a rectangle, and let us partition ∂Ω as follows:

∂Ω :=

Γa :=

(
−W

2 ,−
W
2 + La

)
×
{
−H

2

}
,

Γc :=
(
−W

2 + La,
W
2

)
×

{
−H

2

}
,

C :=
{(

W
2 ,

H
2

)
,
(
−W

2 ,
H
2

)
,
(
−W

2 ,−
H
2

)
,
(
W
2 ,−

H
2

)}
Γ0 := ∂Ω \ (Γa ∪ Γc ∪ C),

shown below by figure 1 of [4]. Here, W and H denote the width and height of the domain, and La

denotes the length of the cathodic boundary. C is the set of corners where we do not impose boundary
conditions, Γa, Γc and Γ0 denote the anodic, cathodic and insulating boundary respectively.

Figure 6: setup of the problem as depicted in [4]

The governing equation – using the paper’s notation – is
∆ϕ(x) = 0 (x ∈ Ω),

ϕ(x) = ϕa (x ∈ Γa),

ϕ(x) = ϕc (x ∈ Γc),
∂
∂nϕ(x) = 0 (x ∈ Γc),

where ϕa and ϕb are set constants, and n is a normal vector to the domain in the given point (i,
j or −i) depending on which side of Γ0 the point x is. Here, ϕ is the potential function of E (the
electric vector field).

Another variation of the same problem is when there is a non-homogeneous Neumann type
boundary condition on Γc as well (depending non-linearly on ϕ), which corresponds to a current on
cathodic boundary. In later stages of the project (in the thesis), we wish to implement the above
described method to these problems as well.

Two particularly challenging aspect of the second problem is how to account for the non-
homogeneous Neumann type boundary condition, and how to verify the method itself.

An idea for the first problem is to measure the difference on the boundary by which a particular
function (i.e. the Green functions) fail to satisfy the boundary condition, and in the numerical
estimation, we try to force this difference to 0. The second problem is yet to be addressed.

10

References

[1] Csáji Balázs Csanád. “Approximation with Artificial Neural Networks”. In: MSc Thesis, Eötvös
Loránd Tudományegyetem, Természettudományi Kar (2001).

[2] Haffner Domonkos and Izsák Ferenc. “Solving the Laplace equation by using neural networks”.
In: url: https://m2.mtmt.hu/api/publication/32625402.

[3] T. Hieu Hoang, Ferenc Izsák, and Gábor Maros. “Approximation properties of fundamental
solutions: a three-dimensional study with Sobolev norms”. In: 2022.

[4] Ge Ji and O. Isgor. “On the numerical solution of Laplace’s equation with nonlinear boundary
conditions for corrosion of steel in concrete”. In: (Jan. 2006).

[5] R. Schaback. A Practical Guide to Radial Basis Functions. url: http://num.math.uni-
goettingen.de/~schaback/teaching/sc.pdf. (accessed: 15.12.2022).

[6] Kurt Hornik, Maxwell Stinchcombe, Halbert White. “Multilayer Feedforward Networks are
Universal Approximators”. In: Neural Networks Vol. 2 (1989), pp. 359–366.

11

