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Basic setup

▶ Trying to create numerical solutions to PDEs using NNs
▶ Main problem: Lack of training data
▶ New approach: Use of fundamental solutions



Basic setup

▶ Laplace’s equation with non-homogeneous Dirichlet type
boundary condition: ∆u = 0, (x ∈ Ω), u(x) = g(x), (x ∈ ∂Ω).



Definition of the method

Train a neural network – whose architecture will be specified later –
such that

NN :
(
G (zk , yj)

)K
k=1︸ ︷︷ ︸

∈RK

7→
(
G (xi , yj)

)I
i=1︸ ︷︷ ︸

∈RI

(∀yj ∈ Y ). (1)

Then, we define the numerical approximation as

ũ : RK → RI , (ũ(xi ))Ii=1 := NN
(
(g(zk))Kk=1

)
(2)

▶ Essentially an interpolation problem, where we impose ∆u = 0
by only picking functions that already satisfy this criterion



Thoretical result

Theorem
Suppose that the points Y = {yj}Jj=1 equally spaced around the
domain, and their distance from the domain is above a particular
positive constant. Then, the approximation

ũ(x) :=
J∑

j=1

ajG (x − yj) :=
J∑

j=1

ajGyj (x)

provides the convergence rate O(h), where h = dist(zj , zj+1).



Experiments on the first problem

The exact values to be estimated are u(x1) = −21, u(x2) = 0 and
u(x3) = 39, and the relative error is calculated as:

ep =
∥
(
u(x1)− ũ(x1), u(x2)− ũ(x2), u(x3)− ũ(x3)

)
∥p

∥
(
u(x1), u(x2), u(x3)

)
∥p

opt lr ep e1 e2 e∞
Adam 0.1 1k 0.7358 0.7345 0.7851
Adam 0.01 1k 8.4109 × 10−2 7.8732 × 10−2 7.3069 × 10−2

Adam 0.01 5k 6.9011 × 10−2 7.0638 × 10−2 7.5214 × 10−2

Adam 0.01 10k 7.9641 × 10−2 7.2514 × 10−2 7.5266 × 10−2

Adam 0.001 1k 100+ 100+ 100+
Adam 0.001 5k 7.005 × 10−3 7.285 × 10−3 7.6783 × 10−3

Adam 0.001 10k 5.032 × 10−3 4.342 × 10−3 4.018 × 10−3

SGD 0.001 1k 1.2421 0.9722 0.6726
SGD 0.001 5k 1.5755 × 10−2 1.4383 × 10−2 1.4402 × 10−2

SGD 0.001 10k 1.1992 × 10−2 1.21523 × 10−2 1 × 10−2



Remarks

▶ all the experiments were done with constant h
▶ Thm does not apply here, we are trying to establish relative

accuracy



Poisson’s equation

1. ábra. Domain of the second problem



Auxiliary points

We are interested in the values {u(xi )}Ii=1, where X = {xi}Ii=1 are
the I = 15 ’spring green’ points in the inside. To approximate these
values, let us define the following auxiliary sets:

Y = {yj}Jj=1 ⊂ extΩ Z = {zk}Kk=1 ⊂ ∂Ω W = {wl}Ll=1.

Here, the "border distance" is 0.005, meaning that every point in Z
is 0.005 units away from ∂Ω.
Now, the task of the numerical approximation is to find a map A,
for which

A
((

f (wl)
)L
l=1,

(
g(zk)

)K
k=1

)
≈

(
u(xi )

)I
i=1.



Setup of the method for the second problem

Take the input-output pairs as before:

NN :
(
0,G (zk , yj)

K
k=1

)︸ ︷︷ ︸
∈RL+K

7→
(
G (xi , yj)

)I
i=1 (∀yj ∈ Y ), (3)

but also need to include the BC:

NN :
((

∆ψ(∥wl−yj∥2)
)L
l=1,

(
ψ(∥zk−yj∥2)

)K
k=1

)
7→

(
ψ(∥xi−yj∥2)

)I
i=1 (∀yj ∈ Y ),

(4)
where ψ is a radial basis function.



Exact solution

The exact solution chosen to be

u(x , y) = xy sin(x + y2)︸ ︷︷ ︸
∆(...):=f

+ x5 − 10x3y2 + 5xy4︸ ︷︷ ︸
∆(...)=0

,

and the exact solutions at the points of X are(
u(xi )

)15
i=1 =

(
−468.34,−420.25,−224.78, 31.685, 215.65,

267.86, 225.76, 149.92, 73.672, 8.265,
− 49.81,−111.43,−188.82,−289.09,−398.99

)
,

which visibly has a significant variance.



Experiments II-1

K = 302 boundary points, L = 312 inner training points
=⇒ I · (L+ K ) = 15 · 612 = 9210 parameters. Set J = 9662.
Single linear layer with no bias, lr = 0.001 10,000 epochs, batch
size = 3, 000 – which is about 15% of the training data set) as in
the first case yields a very noisy learning curve and poor numerical
results (about 50% relative error).



Experiments II-2/a

Increased number of points, including one more hidden layer with
biases:



Experiments II-2/b

Further decreasing the batch sizes ≈ increasing epochs improved
accuracy.

2. ábra. picking batch sizes of 1,024 and 512 respectively



Research questions
Research questions for the Thesis:

1. What NN structure and optimization method is best suitable
for solving these kinds of problems? How can we obtain
methods that have a more sensible running time – both for
further experiments and application purposes.

2. What is the nature of the convergence hinted at by the above
experiments? (Further experiments and perhaps even
theoretical work to be done here.)

3. Can we show – either empirically, or theoretically – a better
than O(h) rate of convergence in the case of Laplace’s
equation?

4. How might we further generalize the class of problems for
which this method applies? One such setup is described in the
last subsection.

5. How can we use the results obtained here in sensible
applications? Can we perhaps use a trained NN to perform
time-steps in a time-dependent setup?
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Thank you for your attention!


