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2022. December



1 Introduction

We consider the following initial value problem (IVP) for a system of ordinary differential equations:

d u(t)

dt
= f(t, u(t)), t ≥ t0, u(t0) = u0 (1)

where t0 ∈ R, u0, u(t) ∈ Rn, where n ∈ N is the dimensionality of the system and f : R× Rn → Rn.
In general, one should also suppose that

f is continuous and for all t0 ∈ R and u0 ∈ Rn (1) has a unique uncontinuable solution. (A0)

From later on, we consider such IVPs, for which (A0) hold. Note that a well-known sufficient
condition for (1) is that f is continuous in its first variable and Lipschitz-continuous in its seconds
variable.

In this project, We consider autonomous ODE systems, i.e.

d u(t)

dt
= f(u(t)), t ≥ 0, u(0) = u0, (2)

so later on we will formulate our definitions/theorems/methods for the autonomous case, even if
in general it is true for the general case (1). We note, that the general n-dimensional ODE (1) can
be rewritten as a n+ 1 dimensional autonomous ODE-system.

It is well-known that these equations cannot usually be solved analitically, therefore numerical
methods are used if one is interested in their approximate solutions and dynamical systems theory
if one is interested in the qualitative behaviour of the solutions. In the 1980’s it was noticed that
numerical ODE solvers can be considered as dynamical systems and since then their qualitative
properties have been studied in detail. In general, if a system (2) has any property that is important
from an application point of view, then one should use (or develop) such numerical method, which
reproduces this property (conditionally). Some of these properties are the number and stability of
equilibria and positivity, which is defined as follows:

Definition 1.1 (Positivity of ODE/IVP). We say that the ODE/IVP (2) is positive if whenever
Rn ∋ u0 ≥ 0, then u(t) ≥ 0, ∀t ≥ 0 (where the relation is considered componentwise). We denote
the set of positive functions as P.

Note that while it is called positivity, we require non-negativity from the solutions. Some other
qualitative properties are the invariance of some quantity and simplecticity.

We formulate an epidemic model and we analyse its qualitative properties (section 2.). In section
3., the general theory of equilibria and positivity preservation for linear methods is summarized.
In section 5., some numerical simulations are given to check if there is a discrepancy between the
general theory and our model.

2 Epidemic model

In 2020, Yang and Wang proposed the following model to investigate the early days of the epidemic
of COVID-19 in Wuhan, China, with incorporation of the possibility that the environment is a
possible transmission route (besides the infected people)[1]. The reason for including the environ-
mental reservoir as a possible transmission route was that officials received a positive result when
they collected samples from the Huanan Seafood Market area. In addition, some studies suggest
that the virus can survive on different surfaces such as metal, glass, and plastic for up to 9 days.
By fitting the outbreak data to the proposed model, they found that the environmental reservoir
had a significant contribution to the overall infection risk[1]. We have modified their proposed
model to include a class with infected but not infectious subpopulation. We have also included a
class with imperfect vaccination, which means that vaccinated people can become infected also.
We have made the following assumptions:

1.A1 There is always an infected but non-infectious phase.

1.A2 Vaccination is imperfect w.r.t infectious individuals and the environment, but in general for
the vaccinated subpopulation to become infected at a lower rate.
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1.A3 The imperfection of the vaccine is the same against infected people and the environment.

1.A4 A vaccinated person can lose immunity.

Our proposed model:

dS

dt
= Λ− βISI − βV SV +ΨC + δR− (χ+ µ)S (3)

dE

dt
= βISI + βV SV + ρβICI + ρβV CV − (α+ µ)E (4)

dI

dt
= αE − (γ + ω + µ)I (5)

dR

dt
= γI − (µ+ δ)R (6)

dC

dt
= χS − ρβICI − ρβV CV − (Ψ + µ)C (7)

dV

dt
= ξI − σV (8)

where S(t), E(t), I(t), R(t), C(t) are the number of susceptible, exposed (infected but not yet
infectious), infected (infectious), recovered, and vaccinated at time instance t, respectively. V
represents the environmental reservoir and is integrated to the model to include the possibility
that a susceptible individual may acquire the disease through the environment and not directly by
susceptible-infectious contacts. Note that there are no space variables, so the virus concentration
in the environment is assumed to be homogeneous (e.g. possibly a city). All the parameters are
non-negative and their ”meaning” can be seen in the table. By assumption [1.A2] ρ ∈ (0, 1).

Parameters
Λ Population influx
µ Natural death rate
ω Disease induced death rate
1/α Mean incubation period
γ Recovery rate
1/δ Mean-time spent in the recovered class
βI Transmission rate by infected individual
βV Transmission rate by the environmental reservoir
1/ρ Vaccine effectiveness
χ Vaccination rate of the susceptible class
Ψ Rate of the vaccination loss
ξ Rate of the exposed individuals contributing the virus to the environment
σ Rate of (natural and artificial) removal of the virus from the environment

The disease free equilibrium (DFE) can be obtained by setting all the derivatives in (3)-(8) to
0 and also E, I, V equal to zero (i.e. no infections in the population):

E0 := (S0, E0, I0, R0, C0, V0) =

(
Λ(Ψ + µ)

µ(Ψ + χ+ µ)
, 0, 0, 0,

Λχ

µ(Ψ + χ+ µ)
, 0

)
(9)

For the endemic equilibrium when ρ ̸= 1, we get a quadratic function for I, where the signs of the
coefficients are not fixed (coefficients not shown). When ρ = 0, the function reduces to a linear
function.

The basic reproduction number R0 for a disease is the number of secondary infections produced
by an infected individual in a fully susceptible population (threshold parameter for invasion of a
disease organism into the population)[2]. We can compute R0 for a compartmental ODE system
by the next generation approach, which is the following[2]: The infection components for model
(3)-(8) are E, I, V . Rewriting the model as:

x′
i = Fi(x, y)− Vi(x, y) i = 1, 2, 3

y′j = gj(x, y) j = 1, 2, 3
(10)

where (x1, x2, x3) = (E, I, V ), (y1, y2) = (S,R,C) where

F =

βESI + βV SV + ρβISI + ρβV SV
0
0

 V =

 (α+ µ)E
−αE + (γ + ω + µ)I

−ξI + σV


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where F(x, y) represents the rate of new infection in compartment i, while Vi(x, y) incorporates
the remaining transitional terms. The Jacobi matrices of the subsystems F and V at the disease
free equilibrium (0, y0)

F = JF(X0) =

0 βIS0 + ρβIC0 βV S0 + ρβV C0

0 0 0
0 0 0

V = JV(X0) =

α+ µ 0 0
−α w + γ + µ 0
0 −ξ σ


The next generation matrix is defined as K = FV −1, which is an upper triangular matrix, so its
spectral radius is

ρ(K) = R0 =
αβIS0

(α+ µ)(γ + ω + µ)
+

αρβIC0

(α+ µ)(γ + ω + µ)
+

βV S0ξα

(α+ µ)(γ + ω + µ)σ
+

ρβV C0ξα

(α+ µ)(γ + ω + µ)σ

= R1
0 +R2

0 +R3
0 +R4

0 (11)

It is important to check whether R0 can indeed be interpreted as some secondary infection. In our
case it can be interpreted as the expected number of secondary infections produced in compartment
E by an infected individual originally in compartment E:

• R1 is the number of the secondary infections in the susceptible subpopulation of the initially
exposed individual in his/her infectious stage, as the ratio α

α+µ is the proportion of individuals

that progress from E to I and one infectious individual causes βIS0

w+γ+µ secondary infections in

the susceptible subpopulation through his/her infectious stage. Similarly, R2 is the number
of the secondary infections in the vaccinated subpopulation of the initially exposed individual
in his/her infectious stage.

• R3
0+R4

0 is the secondary infections by the environment from the initially exposed individual.
R3

0 is the fraction of initially exposed individuals that progress to V through I ( α
α+µ

ξ
w+γ+µ )

causing βV S0 number of new infections in 1
σ time. Similarly, R4

0 can be interpreted for the
vaccinated subpopulation.

Note that by setting ξ = 0, the environmental disease-route disappears.
We will show that there exist a positively invariant biologically feasible invariant set:

Ω =

{
S,E, I,R,C, V ∈ R+ : S + E + I +R+ C ≤ Λ

µ
;V ≤ ξ

ω

Λ

µ

}
⊂ R6 (12)

We will show this through the positivity and boundedness of the solutions.

Theorem 2.1 (The proposed epidemic model positive). The system (3)-(8) is positive in the sense
of (1.1).

Proof. Because under the mild assumption (A0) positivity is equivalent with the condition that
the sign of the derivatives at the boundary points are non-negative (i.e. the solutions are reflected
from the boundary), that is for (2): fi(u1, . . . , ui−1, 0, ui+1, . . . , um) ≥ 0, ∀i ∈ {1, . . . ,m} (for the
proof, see for example [3]). By this, the positivity of (3)-(8) follows because the parameter values
are non-negative. For example, for E:

βISI + βV SV + ρβICI + ρβV CV ≥ 0 (∀S, I,R,C, V ∈ [0,∞))

Theorem 2.2 (Ω is positively invariant). The system (3)-(8) is positively invariant on Ω, that is,
with initial conditions in Ω the solutions stays in Ω for arbitrary t ≥ 0.

Proof. Let N(t) denote the total population at an arbitrary time instance t: N(t) := S(t) +
E(t) + I(t) + R(t) + C(t), which by assumption N(0) ≤ Λ

µ and from the system (3)-(8) N ′(t) =

Λ− µN(t)− ωI(t). By multiplying both sides by eµt, we get that

(N(t)eµt)′ = (Λ− ωI(t))eµt
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After integration from 0 to t:

N(t) = N(0)e−µt + e−µt

∫ t

0

(Λ− ωI(s))eµsds

= N(0)e−µt +
Λ

µ
(1− e−µt)− ω

∫ t

0

I(s)ds

≤ N(0)e−µt +
Λ

µ
(1− e−µt) = e−µt(N(0)− Λ

µ
) +

Λ

µ

≤ Λ

µ

where we have used the non-negativity of I(t) and the parameter ω. Similarly, for V (t):

V ′(t) + σV (t) = ξI(t)

(eσtV (t))′ = eσtξI(t)

V (t) = V (0)e−σt + e−σtξ

∫ t

0

I(s)ds ≤ V (0)e−σt + e−σt ξ

σ

Λ

µ
(eσt − 1)

= e−σt(V (0)− ξ

σ

Λ

µ
) +

ξ

σ

Λ

µ
) ≤ ξ

σ

Λ

µ

where besides the non-negativity of I, we also used its boundedness property.

We also want to obtain stability conditions on the disease free equilibrium and the endemic equi-
librium(s). Van den Driessche et al. showed that the endemic equilibrium is asymptotically stable
under some assumptions on F ,V and g in (10)[2]. Most of these assumptions are not strict and fol-
lows from the logic of endemic modelling. These conditions hold for our model, except assumption
A4, but that only used to show that V is an M-matrix, which holds (and can be checked directly
by calculating V−1). In conclusion, we can state the following theorem for our model:

Theorem 2.3 (Stability of the DFE). If R0 < 1, then the DFE E0 for the system (3)-(8) is locally
asymptotically stable, while for R0 > 1 it is unstable.

To get stability on the endemic equilibria, we use the following theorem from [4]:

Theorem 2.4 (Condition on backward bifurcation[4]). Consider the system of ODEs with param-
eter ϕ:

dx

dt
= f(x;ϕ), f : Rn × R → Rn, f ∈ C2(RnxR), (13)

where 0 is an equilibrium for the system for all ϕ. Assume that

CCS-A1 Denote A := Dxf(0, 0) = ( ∂fi
∂xj

(0, 0)). Assume that zero is a simple eigenvalue of A, and all

the other eigenvalues have negative real part.

CCS-A2 The matrix A for the eigenvalue 0 has a non-negative right eigenvector w and left eigenvector
v.

Let

a : =

n∑
k,i,j

vkwiwj
∂2fk

∂xi∂xj
(0, 0) (14)

b : =

n∑
k,i

vkwi
∂2fk
∂xiϕ

(0, 0) (15)

Then the local dynamics of the system is fully determined by the signs of a and b, specifically:

case i. a > 0, b > 0. When ϕ < 0 with |ϕ| ≪ 1, 0 is locally asymptotically stable, and there exists
a positive unstable equilibrium; when 0 < ϕ1, 0 is unstable and there exists a negative and
locally asymptotically stable equilibrium;

case ii . a < 0, b < 0. When ϕ < 0 with |ϕ| ≪ 1, 0 is unstable; when 0 < ϕ ≪ 1, 0 is locally
asymptotically stable, and there exists a positive unstable equilibrium;
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case iii. a > 0, b < 0. When ϕ < 0 with |ϕ| ≪ 1, 0 is unstable, and there exists a locally asymptotically
stable negative equilibrium; when 0 < ϕ ≪ 1, 0 is stable, and a positive unstable equilibrium
appears;

case iv. a < 0, b > 0. When ϕ changes from negative to positive, 0 changes its sta- bility from stable
to unstable. Correspondingly, a negative unstable equilibrium becomes positive and locally
asymptotically stable

This theorem is based on center manifold theory. From the assumptions, one can conclude that
the center manifold is one-dimensional. After decomposing the center manifold into parts in the
center and stable eigenspaces, the ”part” in the center eigenspace c(t) can be approximated locally

by dc(t)
dt = a

2 c
2 + bϕc.

Theorem 2.5. The system (3)-(8) exhibits forward bifurcation at R0 = 1 if

δγ

(δ + µ)
>

(α+ µ)(γ + µ+ ω)(µ+Ψ+ ρ(χ+ 2µ))

α(µ+Ψ+ χρ)
(16)

, otherwise it exhibits backward bifurcation at R0 = 1.

Proof. We will use the above theorem for the DFE E0, with the parameter phi :=. Λ∗ is the critical
value obtained from R0 = 1:

Λ∗ =
σµ(α+ µ)(γ + ω + µ)(Ψ + χ+ µ)

α(Ψ + µ+ ρχ)(σβI + ξβV )

The matrix of the linearized system at (E0,Λ∗) is

A :=


−(χ+ µ) 0 −βIS

∗
0 δ Ψ −βV S

∗
0

0 −(α+mu) βIS
∗
0 + ρβIC

∗
0 0 0 βV S

∗
0 + ρβV C

∗
0

0 α −(γ + ω + µ) 0 0 0
0 0 γ −(µ+ δ) 0 0
χ 0 −ρβIC

∗
0 0 −(Ψ + µ) −ρβV C

∗
0

0 0 ξ 0 0 −σ


where S∗

0 = Λ∗(Ψ+µ)
µ+χ+µ and C∗

0 = Λ∗χ
µ+χ+µ .

The matrix A has a simple zero eigenvalue, what can be checked directly. The remaining eigenval-
ues cannot be easily calculated, but we only need to check their signs. This can be done by using
the Hurwitz criterion (using the characteristic polynomial of the reduced system, i.e. without the 0
root). To check the signs of the determinant of the minor matrices of the Hurwitz matrix, I wrote
a simple (symbolic) MATLAB code. From the results, we can conclude that the other eigenvalues
have negative real parts.

One left eigenvector for the 0 eigenvalue is

v =

(
0, 1,

α+ µ

α
, 0, 0,

βv(α+ µ)(γ + ω + µ)

α(βV ξ + βIσ)

)
,

which has non-negative entries. After some algebraic manipulation, we get that one right eigen-
vector for the 0 eigenvalue is:

w =

(
ρ(α+ µ)(γ + µ+ ω)

α(µ+Ψ+ χρ)
+

Ψ + µ

µ(χ+ µ+Ψ)
q,

γ + ω + qµ

α
, 1,

γ

µ+ δ
,

χ

µ(χ+ µ+Ψ)
q,

ξ

ω

)T

where

q :=
(α+ µ)(γ + µ+ ω)(µ+Ψ+ ρ(χ+ µ))

α(µ+Ψ+ χρ)
− δγ

δ + µ
.

This vector has non-negative components that corresponds to zero entries in the DFE, which is
sufficient[4].

By taking into account the zero entries of the right eigenvector and the second derivative of f :

5



b = v2w3
∂f2
∂I∂Λ

(E0,Λ∗) + v2w6
∂f2

∂V ∂Λ
(E0,Λ∗) (17)

= (v2w3βV + v2w6βI)
Ψ + µ+ ρχ

µ(χ+Ψ+ µ)
(18)

= (βV +
ξ

σ
βI)

Ψ + µ+ ρχ

µ(χ+Ψ+ µ)
(19)

> 0 (20)

and

a = 2v2

(
w1w3

∂f2
∂S∂I

(E0,Λ∗) + w1w6
∂f2

∂S∂V
(E0,Λ∗) + w5w3

∂f2
∂C∂I

(E0,Λ∗) + w5w6
∂f2

∂C∂V
(E0,Λ∗)

)
(21)

= 2v2(w1 + w5)(w3βI + w6βV ), (22)

(23)

from which we can conclude that backward bifurcation occurs if and only if

δγ

µ(δ + µ)
<

(α+ µ)(γ + µ+ ω)(µ+Ψ+ ρ(χ+ 2µ))

µα(µ+Ψ+ χρ)
(24)

i.e. a > 0.

Note that from (16) we can conclude that the parameters ξ, σ, which directly determine the
dynamics of the environmental reservoir, does not have any influence on the type of the bifurcation.

3 Numerical methods

In general, numerical k-step methods with fixed step size for autonomous ODEs generate a discrete
map

Φf,∆t : (un−1, . . . , un−k) 7→ un (25)

where u1, u2, . . . , uk1
initial values are given and un approximates u(tn) = u(hn), where ∆t is the

fixed step-size. (25) is sometimes called the numerical flow. There exist a number of different
numerical methods:

3.1 Linear multistep methods

The general form of a k-step linear multistep method (LMM) for an autonomous ODE is:

un + α1un−1 + · · ·+ αkun−k = ∆t(β0fn + β1fn−1 + · · ·+ βkfn−k), n = k, k + 1, . . . (26)

where fn−k := f(un−k), where h is the constant step size and uk is the approximation of u(∆tk).

From the consistency condition of the LMM method we have that
∑k

j=0 αj = 0 and
∑k

j=0 αj +∑k
j=0 βj=0, where α0 = 1.

3.2 Runge-Kutta methods

The general form of a s-stage Runge-Kutta method for an autonomous ODE is:

ki = f(un−1 +∆t

s∑
j=1

aijkj), (i = 1, . . . , s) (27)

un = un−1 +∆t

s∑
i=1

biki (28)

where from the consistency conditions we have bT e = 1, where bT := {bi}si=1, A := {aij}si,j=1

and e := (1, . . . , 1)T ∈ Rs. ki-s are the approximation of the derivatives at the stages tn−1 + hci,
c := Ae.
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One generally used fourth order, explicit four stage method is the classical RK4 method:

0
1/2 1/2
1/2 0 1/2
1 0 0 1
b 1/6 1/3 1/3 1/6

3.3 Patankar-Runge-Kutta methods

There are other positivity-preserving (nonlinear) numerical methods. Such method are the (mod-
ified) Patankar-Runge-Kutta methods that preserves positivity unconditionally. These methods
can be used for positive and conservative production-destruction systems (PDS) of the form:

d ui(t)

dt
=

n∑
j=1

pij(u(t))− dij(u(t)), u(0) = u0 i = 1, . . . , n,

where pij(u), dij(u) ≥ 0 are the construction and destruction terms, respectively, and pij = dji (i.e.
conservative). For this type of ODEs, one can consider the positivity-preserving, conservativity-
preserving regular, semi-implicit modified first-order Patankar-Euler-scheme [5]:

un+1
i = un

i +∆t

( m∑
j=1

pij(u
n)

un+1
j

un
j

−
m∑
j=1

dij(u
n)

un+1
i

un
i

)
, i = 1, . . . , n,

where ∆t > 0 is the step size. The scheme can be modified to higher order methods by Runge-Kutta
theory[5]. Furthermore, the methods can be generalized to PDS systems with a rest-term: ri(u) ≥ 0
(PDSR)[6]. There is a large class of compartmental epidemic models which can be reformulated as
PDSR systems (e.g. models with constant population). The behaviour of Patankar-Runge-Kutta
methods is not fully known, it is an active research field[7].

4 Preservation of properties

4.1 Regularity of numerical methods

It is an evident question to ask: does our continuous model (2) has the same equilibria as the
discrete map (25)? We will see that this is not the case for many linear methods. We will denote
the set of the equilibria of (2) and of (25) as F and F∗

∆t, respectively. (F∗
∆t := {u∗ ∈ Rn :

Φf,∆t(u
∗, . . . , u∗) = u∗}).

For LMM, if we suppose that u∗ ∈ F∗
∆t, then by consistency we have that

∑
ak = 0 and

∑
bk ̸= 0,

so f(u∗) = 0 i.e. u∗ ∈ F . On the other hand, for uk ≡ u∗ ∈ F obeys Φf,∆t(u
∗, . . . , u∗) = u∗ by

consistency[8]. In conclusion, for (consistent) linear multistep methods F = F∗
∆t for all ∆t > 0.

For Runge-Kutta methods, if u∗ ∈ F , then Φf,∆t(u
∗) = u∗ holds with the choice ki = 0 for all i =

1, . . . , s. So F ⊂ F∗
∆t holds by the supposed uniqueness of the solution. Hairer et al. gave con-

ditions on the RK methods for F = F∗
∆t[9]. These RK methods are called regular. They showed

that for regular (s-stage) methods one can construct an s − 1 stage RK method which preserves
the regularity. From the exact construction, it follows easily that the only explicit regular method
is the explicit-Euler. This construction also gives an algorithm to determine the regularity of any
RK method. For RK methods of order p ≥ 2, they also showed that a necessary condition for
regularity is that the trace of the matrix A is 1

2 (this is also sufficient for s = 2) and there is no
regular A-stable method with order larger than 4. They also showed that one of the advantage
of the implicit RK methods, the large order compared to the number of stages, does not hold for
regular methods because:

Theorem 4.1 ([9], Barriers of regular RK methods). The order p of a regular s stage RK method
satisfies

p ≤ s+ 2 if s is even

p ≤ s+ 1 if s is odd
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It is also clear that an irregular RK method as a starting procedure of an LMM does not alter
the equilibria, and regularity does not imply the non-existence of spurious periodic solutions. A
well-known example for the latter is the period-doubling behaviour of the explicit-Euler discretized
logistic equation[10]. The full characterization for LMM for the existence of spurious 2-cycles are
known, but in general these conditions are strict, so one puts some condition on the function f
in (2), to get less strict conditions[11]. This shows the well-known fact that one has to choose a
preferred numerical method (partly) in a problem-driven way. It should also be noted that we are
interested in the cases when the method is stable.

4.2 Stability preservation of equilibria

To obtain similar dynamics for the numerical maps, it is also required that the asymptotic behaviour
of the equilibria of (25) is the same as that of the equilibria of (2). This holds for the limit ∆t → 0
by convergence, but might not hold for arbitrary ∆t > 0. From the absolute stability theory it
is clear that the preservation of equilibria is a step-size and problem dependent question. The
existence of irregular RK methods motivates and complicates this question, even in the case if
the spurious equilibrium is unstable, because it may happen that this unstable equilibrium has an
unstable manifold which connects to infinity, so the boundedness property of the solutions of the
IVP can get lost[11].

4.3 Positivity-preserving numerical methods

Similarly for the continuous, one can define positivity for numerical methods.

Definition 4.1. Let there be given a numerical method, a set of functions F ⊂ P and a real number
0 < H ≤ ∞. We call the method positive on F with threshold H if the numerical approximation
(25) are non-negative whenever f ∈ F , u0 ∈ Rn

+ with step size 0 < ∆t ≤ H. If H = ∞, then we
call the method unconditionally positive, otherwise conditionally positive.

Note that for multistep methods, one can talk about a multistep method being positive with
suitable starting procedure or with any starting procedure.

4.3.1 SSP

Suppose that for the given f from (2) the explicit-Euler method is conditionally positive for step
sizes ∆tFE , i.e.

0 ≤ u+∆tf(u), ∀u ∈ Rn
+, ∀∆t ≤ ∆tFE (29)

Then for an explicit LMM:

un =

k∑
j=1

−αj

(
un−j + cj∆tf(un−j)

)
(30)

where cj :=
−βj

αj
. The positivity holds for arbitrary starting values if αj ≤ 0, βj ≥ 0 and

cj∆t ≤ ∆tFE , j = 1, . . . , k i.e.

∆t ≤ C∆tFE , C := minj=1,...,k
αj

−βj
(31)

The method-dependent constant C is called the SSP-coefficient. It was shown, that there exist no
explicit p-th order p step LMM in the case of p > 1, if one considers arbitrary starting values[12].
This is not the case if one fixes the starting procedure; the optimal explicit second-order 2-step
LMM is the so-called extrapolated BDF-2 method:

un − 4

3
un−1 +

1

3
un−2 = ∆t

(
4

3
f(un−1)−

2

3
f(un−2)

)
with C = 1

2 [13]. Note that in this case, we have different conditions than the non-negativity of
−αi, βi. In general, it is also true, (independently of fixing the starting procedure or not) that for
explicit LMM C ≤ 1,while for implicit LMMs C ≤ 2.

These methods are called strong stability preserving methods (SSP) and are generally used for
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the semi-discretized system of nonlinear partial differential equations. They are based on the
preservation of the monotonicity property for some semi-norm ||.||, i.e.: ||u(t)|| ≤ ||u(t0)|| for the
solution of the semi-discretized system in the form (2)[12]. In this case, one look for methods where
the approximations satisfy ||un|| ≤ ||u0||. One such semi-norm is the total variation of a vector
v := {vi}ni=1: ||v|| := TV (v) :=

∑n
j=2 |vj −vj−1|. Such methods with the above property are called

Total Variation Diminishing, which prevents spatial oscillations[14].

For Runge-Kutta methods one can similarly rewrite the stages as a convex combination of explicit-
Euler steps (called the modified Shu-Osher form), but for RK methods, this representation is not
unique what is problematic mainly because one may get different SSP coefficients for different
representations. RK methods can be uniquely represented in the so-called canonical Shu-Osher
form[12]. A necessary condition on the non-triviality of the SSP coefficient is the non-negativity
of A and b and there exists an order barrier for explicit (≤ 4) and implicit methods (≤ 6). This
is not the case for LMMs[12]. These conditions are not sufficient, for example the classical RK4
method has SSP-coefficient 0. Similarly, for LMMs, in the case of second or larger order methods,
explicit RK methods have C ≤ 1 while implicit methods have C ≤ 2 SSP coefficients.

5 Numerical simulations

One can get a sufficient condition on the positivity of the explicit-Euler discretization scheme for
the system (3)-(8):

Theorem 5.1. The explicit-Euler discretization of the system (3)-(8) is conditionally positive with
step-size

H = min

(
1

α+ µ
,
1

σ
,

1

µ+ δ
,

1

γ + ω + µ
,

1

χ+ µ+ Λ
µ (βI + βV

ξ
σ )

,
1

Ψ + µ+ ρΛ
µ (βI + βV

ξ
σ )

)
Proof. For the positivity, we will need some boundedness, so in general we will show that if
(sn, en, in, rn, cn, vn) ∈ Ω then (sn+1, en+1, in+1, rn+1, cn+1, vn+1) ∈ Ω. Denote nn := sn + en +
in+ rn+ cn, then nn+1 = nn+∆t(Λ−µnn−ωin) ≤ (1−∆tµ)nn+∆tΛ, which is smaller or equal
than Λ

µ if ∆t ≤ 1
µ . Similarly, if ∆t ≤ 1

σ , then vn+1 ≤ ξΛ
σµ .

For the positivity, we will use the same logic as in [15] (which was also used in my math project II.).
For the first variable, we want to show that sn+1 ∈ [0, λ

µ ]. From the explicit-Euler discretization:

sn+1 = sn +∆t(Λ− βIsnin − βV snvn +Ψcn + δrn − (χ+ µ)sn)

The positivity holds if and only if

sn ≥ −∆t(Λ− βIsnin − βV snvn +Ψcn + δrn − (χ+ µ)sn). (32)

If
−(Λ− βIsnin − βV snvn +Ψcn + δrn − (χ+ µ)sn) ≤ 0

then the inequality (32) holds for any step size. If

−∆t(Λ− βIsnin − βV snvn +Ψcn + δrn − (χ+ µ)sn) > 0

then the positivity holds for step sizes

∆t <
sn

−Λ + βIsnin + βV snvn −Ψcn − δrn + (χ+ µ)sn)
. (33)

From the inequality:

1

(χ+ µ) + (βI + βV
ξ
σ )

Λ
µ

=
sn

sn(χ+ µ) + (βI + βV
ξ
σ )

Λ
µ sn

≤ sn
−Λ + βIsnin + βV snvn + (χ+ µ)sn −Ψcn − δrn

(34)

So for any ∆t ≤ 1
(χ+µ)+(βI+βV

ξ
σ )Λ

µ

the inequality (32) holds, i.e. sn ≥ 0.

For en, in, rn, cn, vn the proof can be carried out similarly, but one gets simpler sufficient conditions
for ∆t because of the sign of the terms.
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We also performed numerical simulations for the system (3)-(8) to see how the different numerical
methods preserve the positivity and the long-time behaviour of the solutions of the continuous
model. We considered the classical RK4 method and the SSPM42 method. We approximated
the solutions by these methods for numerous initial values. These initial values were always in
the positively invariant set Ω, we have experimented with different number and arrangement of
these initial values. The main reason why we considered different arrangements was that our
computational power were limited, but to check the preservation of positivity one can consider
initial values near the boundary. We only considered some fixed values of the parameters, while
changing the parameter Λ to consider different R0 values. The fixed values were chosen in non-
systematic way. In these cases both methods lost their positivity after losing their stability. We
also have not seen stable spurious equilibria (which changes continuously for the different step
sizes).

6 Future directions

In general, one can get better results about spurious equilibria and positivity preservation of a
numerical method by narrowing the class of considered functions. Linear and contractive problems
are extensively studied, but these classes are too strict for epidemic models. One such subclass
which is not as strict are the dissipative systems, which property holds in the positive quadrant
for epidemic models in the case of globally asymptotic stable equilibrium. One can also get better
results for SSP methods by considering a subclass of the positive problems. For example, Higueras
considered the subclass of functions for which the explicit-Euler method is conditionally positive
for also in backward time (i.e. −f(u)). He showed that in this subclass, the SSP coefficient of
the RK4 method is non-zero[16]. We also want to study constant population epidemic models for
which Patankar-Rungke-Kutta methods can also be used.
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[6] A. I. Ávila, G. J. González, S. Kopecz, and A. Meister, “Extension of modified patankar–
runge–kutta schemes to nonautonomous production–destruction systems based on oliver’s
approach,” Journal of Computational and Applied Mathematics, vol. 389, p. 113 350, 2021.
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