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1 Summary
We consider a self-adjoint second order elliptic boundary value problem with variable ze-
roth order coefficient and its finite element discretization. In this project, we study the
mesh-independent superlinear convergence of the preconditioned conjugate gradient method
(CGM) for this type of problem. Our goal is to find an eigenvalue-based estimation of the
rate of the superlinear convergence when the reaction coefficient of the elliptic boundary
value problem belongs to a general Sobolev space. This work extends the results done in [1]
where the coefficient was assumed to be continuous.

2 General framework
Let 𝐻 be a separable Hilbert space and let us consider a linear operator equation

𝐵𝑢 = 𝑔 (1)

with some 𝑔 ∈ 𝐻, under the following assumptions

(i) The operator 𝐵 is decomposed as 𝐵 = 𝑆 + 𝑄 where 𝑆 is a self-adjoint operator in 𝐻

with dense domain 𝐷 and 𝑄 is a compact self-adjoint operator defined on the domain
𝐻.

(ii) There exists 𝑘 > 0 such that ⟨𝑆𝑢, 𝑢⟩ ≥ 𝑘 ∥𝑢∥2, 𝑢 ∈ 𝐷.

(iii) ⟨𝑄𝑢, 𝑢⟩ ≥ 0, 𝑢 ∈ 𝐷.

We recall that the energy space 𝐻𝑆 is the completion of 𝐷 under the energy inner product
⟨𝑢, 𝑣⟩𝑆 = ⟨𝑆𝑢, 𝑣⟩, and the corresponding norm is denoted by ∥ · ∥𝑆. Assumptions (𝑖𝑖) implies
𝐻𝑆 ⊂ 𝐻. Moreover, assumptions (𝑖) − (𝑖𝑖) on 𝑆 imply that R(𝑆) = 𝐻, hence 𝑆−1𝑄 makes
sense.

We replace equation (1) by its preconditioned form (𝐼+𝑆−1𝑄)𝑢 = 𝑆−1𝑔. This is equivalent
to the weak formulation

⟨𝑢, 𝑣⟩𝑆 + ⟨𝑄𝑢, 𝑣⟩ = ⟨𝑔, 𝑣⟩, ∀𝑣 ∈ 𝐻𝑠 . (2)

Since by assumption (𝑖𝑖𝑖) the bilinear form on the left is coercive on 𝐻𝑆, by the Lax-Milgram
theorem, there exists a unique solution 𝑢 ∈ 𝐻𝑆 of (2).

Now equation (2) is solved numerically using a Galerkin discretization.
Construction of the discretization. Let 𝑉 = span{𝜑1, . . . , 𝜑𝑘 } ⊂ 𝐻𝑆 be a given

finite-dimensional subspace,

S = {⟨𝜑𝑖, 𝜑 𝑗 ⟩𝑆}𝑘𝑖, 𝑗=1 and Q = {⟨𝑄𝜑𝑖, 𝜑 𝑗 ⟩}𝑘𝑖, 𝑗=1

the Gram matrices corresponding to 𝑆 and 𝑄. We look for the numerical solution 𝑢𝑉 ∈ 𝑉 of
equation (2) in 𝑉 , i.e., for which

⟨𝑢𝑉 , 𝑣⟩𝑆 + ⟨𝑄𝑢, 𝑣⟩ = ⟨𝑔, 𝑣⟩, ∀𝑣 ∈ 𝑉. (3)
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Then 𝑢𝑉 =
∑𝑘

𝑖, 𝑗=1 𝑐 𝑗𝜑 𝑗 , where c = (𝑐1, . . . , 𝑐𝑘 ) ∈ R𝑘 is the solution of the system

(S +Q)c = b (4)

with b = {⟨𝑔, 𝜑 𝑗 ⟩}𝑘𝑗=1 depending on 𝑉 . The matrix S +Q is SPD.
By using matrix S as the preconditioner for the system (4), we shall work with the

preconditioned system
(I + S−1Q)c = b̃, (5)

where b̃ = S−1b and I is the identity matrix in R𝑘 . Then we apply the CGM for the solution
of this new system.

The next step is to find superlinear convergence rates for the CGM. Let A = (I+S−1Q) and
E = S−1Q. Assume that 𝜆 𝑗 = 𝜆 𝑗 (A) are ordered according to |𝜆1−1| ≥ |𝜆2−1| ≥ · · · ≥ |𝜆𝑘−1|.
Then 𝜆 𝑗 (E) = 𝜆 𝑗 − 1 and the error vectors 𝑒𝑘 = 𝑐𝑘 − 𝑐 satisfy [2](

∥𝑒𝑘 ∥𝐴
∥𝑒0∥𝐴

)1/𝑘
≤ 2∥A−1∥

𝑘

𝑘∑︁
𝑗=1

|𝜆 𝑗 (S−1Q) |, 𝑘 = 1, 2, . . . , 𝑛. (6)

The next result allows us to give a convergence rate for the upper bound of (6) through
the eigenvalues of the operator 𝑄𝑆 = 𝑆−1𝑄.

Theorem 1. For any 𝑘 = 1, 2, . . . , 𝑛

𝑘∑︁
𝑗=1

|𝜆 𝑗 (S−1Q) | ≤
𝑘∑︁
𝑗=1

𝜆 𝑗 (𝑆−1𝑄), (7)

Proof. Let 𝜆𝑚 = 𝜆𝑚 (S−1Q). Let c𝑚 = (𝑐𝑚1 , . . . , 𝑐
𝑚
𝑘
) ∈ R𝑘 be the corresponding eigenvectors.

Then
Qc𝑚 = 𝜆𝑚Sc (8)

for all 𝑚. Since Q𝑺 = S−1Q is self-adjoint with respect to the S−inner product, therefore
all eigenvalues are 𝜆1, . . . , 𝜆𝑘 , counting with multiplicity. Furthermore, the corresponding
eigevectors are orthogonal in R𝑘 with respect to the S−inner product. Let us choose them
such that they are also orthonormal:

S𝑐𝑚 · 𝑐𝑙 = 𝛿𝑚𝑙 , 𝑚, 𝑙 = 1, . . . , 𝑘,

where 𝛿𝑚𝑙 is the Kronecker delta.
Let 𝑢𝑚 =

∑𝑘
𝑖=1 𝑐

𝑚
𝑖
𝜑𝑖 ∈ 𝑉 , 𝑚 = 1, . . . , 𝑘. Then for all 𝑚, 𝑙 = 1, . . . , 𝑘 we have that

⟨𝑢𝑚, 𝑢𝑙⟩𝑆 =
𝑘∑︁

𝑖, 𝑗=1

⟨𝜑𝑖, 𝜑 𝑗 ⟩𝑆𝑐𝑚𝑖 𝑐𝑙𝑗 = S𝑐𝑚 · 𝑐𝑙 , (9)

hence (8) implies that 𝑢1, . . . , 𝑢𝑘 form an orthonormal basis in 𝑉 ⊂ 𝐻𝑆 with respect to the
𝐻𝑆-inner product. Then (8),(9) yield

Q𝑐𝑚 · 𝑐𝑙 = 𝜆𝑚𝛿𝑚𝑙 , 𝑚, 𝑙 = 1, . . . , 𝑘 .
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Hence, we obtain
⟨𝑄𝑆𝑢𝑚, 𝑢𝑙⟩𝑆 = 𝜆𝑚𝛿𝑚𝑙 , 𝑚, 𝑙 = 1, . . . , 𝑘 . (10)

Using Corollary 3.3 of [3] and since 𝑄𝑆 = 𝑆−1𝑄 is a compact self-adjoint operator on the
Hilbert space 𝐻𝑆, we have that

𝑘∑︁
𝑚=1

|⟨𝑄𝑆𝑢𝑚, 𝑢𝑚⟩𝑆 | ≤
𝑘∑︁

𝑚=1

𝑠 𝑗 (𝑄𝑆) =
𝑘∑︁

𝑚=1

𝜆 𝑗 (𝑄𝑆), (11)

where 𝑠 𝑗 (𝑆−1𝑄) are the singular values of 𝑆−1𝑄. Then, by (10) and (11) we arrive at

𝑘∑︁
𝑚=1

|𝜆𝑚 | =
𝑘∑︁

𝑚=1

|⟨𝑄𝑆𝑢𝑚, 𝑢𝑚⟩𝑆 | ≤
𝑘∑︁

𝑚=1

𝜆 𝑗 (𝑄𝑆).

□

An immediate consequence of this theorem is the following mesh-independent bound.

Corollary 1. For any 𝑘 = 1, 2, . . . , 𝑛(
∥𝑒𝑘 ∥𝐴
∥𝑒0∥𝐴

)1/𝑘
≤ 2∥𝐴−1∥

𝑘

𝑘∑︁
𝑗=1

𝜆 𝑗 (𝑆−1𝑄), 𝑘 = 1, 2, . . . , 𝑛. (12)

Proof. By [4, Prop. 4.1] we are able to estimate ∥A∥ to obtain

∥(I + S−1Q)−1∥ ≤ ∥(𝐼 + 𝑆−1𝑄)−1∥.

This, together with the previous result and (6) completes the proof. □

Since |𝜆1(𝑆−1𝑄) | ≥ |𝜆2(𝑆−1𝑄) | ≥ · · · ≥ 0 and the eigenvalues tend to 0, the convergence
factor is less than 1 for 𝑘 sufficiently large. Hence the upper bound decreases as 𝑘 → ∞ and
we obtain superlinear convergence rate.

3 Main result
Let 𝑁 ≥ 2, 𝑝 > 2 and Ω ⊂ R𝑁 be a bounded domain. We consider the elliptic problem{

−div(𝐺∇𝑢) + 𝜂𝑢 = 𝑔,

𝑢𝜕Ω = 0,
(13)

under the standard assumptions listed below. We shall focus in the case when the principal
part has constant or separable coefficients, i.e.,

𝐺 (𝑥) ≡ 𝐺 ∈ R𝑁 × R𝑁 or 𝐺 (𝑥) ≡ diag{𝐺𝑖 (𝑥𝑖)}𝑁𝑖=1

whereas 𝜂 = 𝜂(𝑥) is a general variable (i.e. nonconstant) coefficient. Let problem (13) satisfy
the following assumptions:
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(i) The symmetric matrix-valued function 𝐺 ∈ C1(Ω,R𝑁 × R𝑁 ) satisfies

𝐺 (𝑥)𝜉 · 𝜉 ≥ 𝑚 |𝜉 |2

for all 𝜉 ∈ R𝑁 , 𝑚 independent of 𝜉.

(ii) 𝜂 ∈ L𝑝/(𝑝−2) (Ω).

(iii) 𝜕Ω is piecewise C2 and Ω is locally convex at the corners.

(iv) 𝑔 ∈ L2(Ω).

Then problem (13) has a unique weak solution in H1
0(Ω).

Let 𝑉ℎ ⊂ H1
0(Ω) be a given FEM subspace. We look for the numerical solution 𝑢ℎ of (13)

in 𝑉ℎ: ∫
Ω

(𝐺∇𝑢ℎ · ∇𝑣 + 𝑑𝑢ℎ𝑣) =
∫
Ω

𝑔𝑣, 𝑣 ∈ 𝑉ℎ. (14)

The corresponding linear algebraic system has the form

(Gℎ +Dℎ)c = gℎ,

where Gℎ and Dℎ are the corresponding stiffness and mass matrices, respectively. We apply
the matrix Gℎ as preconditioner, thus the preconditioned form of (14) is given by

(Iℎ +G−1
ℎ Dℎ)c = g̃ℎ (15)

with g̃ℎ = G−1
ℎ gℎ. Now, we apply the CGM for the system (15).

Theorem 2. Let 2 < 𝑝 < 2𝑁
𝑁−2 , and 𝑚 the lower spectral bound of 𝐺 given by assumption

(𝑖). Then there exists 𝑪 > 0 such that for all 𝑘 ∈ N(
∥𝑒𝑘 ∥𝐴
∥𝑒0∥𝐴

) 1
𝑘

≤ 𝑪𝑘−
1
𝑠 , (16)

where 𝛼 = 1
𝑁
− 1

2 +
1
𝑝

and 𝑠 > 1
𝛼
.

Proof. Let us consider the Hilbert space L2(Ω) endowed with the usual inner product. Let
𝐷 = H1

0(Ω) ∩ H2(Ω). We define the operators

𝑆𝑢 ≡ −div(𝐺∇𝑢), 𝑢 ∈ 𝐷 and 𝑄𝑢 ≡ 𝑑𝑢, 𝑢 ∈ H1
0(Ω)

and since 𝑝 < 2∗ = 2𝑁
𝑁−2 , the embedding I : H1

0(Ω) → L𝑝 (Ω) is compact, in particular, there
exists 𝑐 > 0 such that for all 𝑢 ∈ H1

0(Ω)

∥𝑢∥L𝑝 (Ω) ≤ 𝑐∥𝑢∥H1
0 (Ω)

.

Then
⟨𝑆𝑢, 𝑢⟩ ≥ 𝑚

∫
Ω

|∇𝑢 |2 ≥ 𝑚𝜈

∫
Ω

𝑢2, 𝑢 ∈ 𝐷,
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where 𝜈 is the Sobolev constant. By assumption (𝑖𝑖𝑖) the symmetric operator 𝑆 maps onto
L2(Ω). Furthermore,

∥𝑄𝑆𝑣∥𝐻𝑆
= sup

∥𝑢∥𝑆=1
|⟨𝑄𝑆𝑣, 𝑢⟩𝑆 | = sup

∥𝑢∥𝑆=1
⟨𝑄𝑣, 𝑢⟩

= sup
∥𝑢∥𝑆=1

∫
Ω

𝜂𝑣𝑢

≤ sup
∥𝑢∥𝑆=1

(∫
Ω

|𝜂 |
𝑝

𝑝−2

) 𝑝−2
𝑝

(∫
Ω

|𝑣 |𝑝
) 1

𝑝
(∫

Ω

|𝑢 |𝑝
) 1

𝑝

≤ 𝑐 sup
∥𝑢∥𝑆=1

∥𝜂∥L𝑝/(𝑝−2) (Ω) ∥𝑣∥L𝑝 (Ω) ∥𝑢∥𝑆

= 𝐶∥𝑣∥L𝑝 (Ω) ,

(17)

where 𝐶 = 𝑐∥𝜂∥L𝑝/(𝑝−2) (Ω). Here we apply the extension of Hölder’s inequality ([5, Th. 4.6])
with

1 =
1

𝑝
+ 1

𝑝
+

(
𝑝 − 2

𝑝

)
.

Hence 𝑄𝑆 = 𝑆−1𝑄 is compact and self-adjoint in 𝐻𝑆 = H1
0(Ω) with ⟨𝑢, 𝑣⟩𝑆 =

∫
Ω
𝐺∇𝑢 · ∇𝑣.

Let 𝜆𝑛 = 𝜆𝑛 (𝑆−1𝑄). Since 𝑆−1𝑄 is a compact self-adjoint operator in 𝐻𝑆, by [3, Ch.6,
Th.1.5] we have the following characterization of the eigenvalues of 𝑄𝑆:

∀𝑛 ∈ N : 𝜆𝑛 (𝑄𝑆) = min{∥𝑄𝑆 − 𝐿𝑛−1∥ / 𝐿𝑛−1 ∈ L(𝐻𝑆), rank(𝐿𝑛−1) ≤ 𝑛 − 1}.

By taking the minimum over a smaller subset of finite rank operators, we obtain

𝜆𝑛 (𝑄𝑆) ≤ min{∥𝑄𝑆 −𝑄𝑆𝐿𝑛−1∥ / 𝐿𝑛−1 ∈ L(𝐻𝑆), rank(𝐿𝑛−1) ≤ 𝑛 − 1}. (18)

Now, by (17) we get

∥𝑄𝑆 −𝑄𝑆𝐿𝑛−1∥ = sup
𝑢∈𝐻𝑆

∥(𝑄𝑆 −𝑄𝑆𝐿𝑛−1)𝑢∥𝐻𝑆

∥𝑢∥𝐻𝑆

= sup
𝑢∈𝐻𝑆

∥𝑄𝑆 (𝑢 − 𝐿𝑛−1𝑢)∥𝐻𝑆

∥𝑢∥𝐻𝑆

≤ 𝑐 sup
𝑢∈𝐻𝑆

∥𝑢 − 𝐿𝑛−1𝑢∥L𝑝 (Ω)
∥𝑢∥𝐻𝑆

≤ 𝑐
√
𝑚

sup
𝑢∈H1

0 (Ω)

∥𝑢 − 𝐿𝑛−1𝑢∥L𝑝 (Ω)
∥𝑢∥H1

0 (Ω)

where in the last step we use the inequality
√
𝑚∥𝑢∥H1

0 (Ω)
≤ ∥𝑢∥𝐻𝑆

. This, together with (18)
yields

𝜆𝑛 (𝑄𝑆) ≤
𝐶
√
𝑚

min{∥I−𝐿𝑛−1∥/ 𝐿𝑛−1 ∈ L(H1
0(Ω),L

𝑝 (Ω)), rank(𝐿𝑛−1) ≤ 𝑛−1} := 𝑎𝑛 (I), (19)
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where 𝑎𝑛 (I) denotes the approximation numbers of the compact embedding I : H1
0(Ω) ↦→

L𝑝 (Ω), [6]. Furthermore, we have the estimation [7]

𝑎𝑛 (I) ≤ 𝐶𝑛−𝛼, 𝛼 =
1

𝑁
− 1

2
+ 1

𝑝
,

for some constant 𝐶 > 0. Therefore, we arrive at the inequality

𝑠𝑛 (𝑄𝑆) ≤
𝐶𝐶
√
𝑚
𝑛−𝛼 .

Now, taking the arithmetic mean on both sides and by Hölder’s inequality, we obtain

1

𝑘

𝑘∑︁
𝑛=1

𝑠𝑛 (𝑄𝑆) ≤
𝐶𝐶
√
𝑚

1

𝑘

(
𝑘∑︁

𝑛=1

1

𝑛𝛼𝑠

) 1
𝑠

𝑘
1
𝑡 =

𝐶𝐶
√
𝑚

(
𝑘∑︁

𝑛=1

1

𝑛𝛼𝑠

) 1
𝑠

1

𝑘
1
𝑠

, (20)

where 1
𝑡
+ 1

𝑠
= 1. Let 𝑠𝛼 > 1, then we obtain

1

𝑘

𝑘∑︁
𝑛=1

𝑠𝑛 (𝑄𝑆) ≤
𝐶𝐶
√
𝑚

( ∞∑︁
𝑛=1

1

𝑛𝑠𝛼

) 1
𝑠

1

𝑘
1
𝑠

=
𝑪

𝑘
1
𝑠

.

Then, by (12), we conclude. □
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