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 Overview  

The problem of injecting carbon-dioxide into deep reservoirs is important from 

the practical point of view and its modeling is mathematically challenging. In the 

framework of the planned project, first, the corresponding one-phase flow.  

Another important task is the computer simulation of the corresponding process 

using the Matlab toolbox MRST.  

In this study, CO2 is injected in the aquifer for a period of 30 years. Thereafter 

we simulate the migration of the CO2 in a post-injection period of 720 years.  

The simulation is done using the vertical average/equilibrium framework.  

 

In this part from the project, we will explain two functions that are of great 

importance in the simulation of co2 injection in deep reservoirs. 

First function: 

Solve incompressible flow problem (fluxes/pressures) for VE equation. 

 SYNOPSIS: 

    state = solveIncompFlowVE(state, G, S, rock, fluid) 

    state = solveIncompFlowVE(state, G, S, rock, fluid, 'pn1', pv1, ...) 

 

 DESCRIPTION: 

    This function assembles and solves a (block) system of linear equations  

defining interface fluxes and cell and interface pressures at the next time step in a 

sequential splitting scheme for the reservoir simulation problem defined by 



Darcy's law and the Vertical Equilibrium assumption and a given set of external 

influences (wells, sources, and boundary conditions). 

 NOTE: 

   REQUIRED PARAMETERS: 

    state : Reservoir and well solution structure either properly initialized from 

functions 'initResSol' and 'initWellSol' respectively, or the results from a previous 

call to functio 'solveIncompFlowVE' and, 

possibly, a transport solver such a function 'explicitTransportVE'. 

OPTIONAL PARAMETERS: 

 bc : Boundary condition structure as defined by function 'addBC'. 

     This structure accounts for all external boundary conditions to the reservoir 

flow.  May be empty (i.e., bc = []) which is interpreted as all external no-flow 

(homogeneous Neumann) conditions. 

 Src : Explicit source contributions as defined by function 'addSource'.  May be 

empty (i.e., src = []) which is interpreted as a reservoir model without explicit 

sources. 

 NOTE: This is a special purpose option for use by code which needs to modify 

the system of linear equations directly. 

LinSolve : Handle to linear system solver software to which the fully  assembled 

system of linear equations will be passed.  Assumed to support the syntax x = 

LinSolve(A, b) in order to solve a system Ax=b of linear equations. Default 

value: LinSolve = @mldivide (backslash). 

   RETURNS: 

    state: Update reservoir and well solution structure with new values for the 

fields: 

    pressure: Pressure values for all cells in the  discretised reservoir model, 'G'. 

    facePressure: Pressure values for all interfaces in the discretised reservoir 

model, 'G'. 

 

Second function: 

Explicit single point upwind solver for two-phase flow using VE equations. 

   SYNOPSIS: 



  [state, dt_v] = explicitTransportVE(state, G_top, tf, rock, fluid) 

  [state, dt_v] = explicitTransportVE(state, G_top, tf, rock,…  fluid,  'pn1', pv1) 

 

 DESCRIPTION: 

    Function explicitTransportVE solves the Buckley-Leverett transport equation 

h_t + f(h)_x = q 

 using a first-order upwind discretisation in space and a forward Euler 

discretisation in time.  The transport equation is solved on the time  interval 

[0,tf]. 

 The upwind forward Euler discretisation of the Buckley-Leverett model 

    for the Vertical Equilibrium model can be written as: 

  h^(n+1) = h^n - (dt./pv)*((H(h^n) - max(q,0) - min(q,0)*f(h^n)) where 

  H(h) = f_up(h)(flux + grav*lam_nw_up*(z_diff+rho_diff*h_diff(h))) 

  z_diff, h_diff are two point approximations to grad_x z, and grad_x h, f_up and 

lam_nw_up are the Buckely-Leverett fractional flow function and the mobility 

for the non-wetting phase, respectively, evaluated for upstream mobility: 

   f_up = A_w*lam_w(h)./(A_w*lam_w(h)+A_nw*lam_nw(h)) 

   lam_nw_up = diag(A_nw*lam_nw(h), pv is the porevolume, lam_x is the 

mobility for phase x, while A_nw  and A_w are index matrices that determine the 

upstream mobility.  If h_diff is evaluated at h^(n+1) instead of h^n we get a semi 

implicit method. 

 

 PARAMETERS: 

    state: Reservoir solution structure containing valid water saturation state.h(:,1) 

with one value for each cell in the grid. 

 G_top: Grid data structure discretising the top surface of the reservoir model, as 

defined by function 'topSurfaceGrid'. 

NB: The explicit scheme is only stable provided that dt satisfies a CFL time step   

restriction. 

 time_stepping: Either use a standard CFL condition ('simple'), Coats formulae 

('coats'), or a heuristic bound that allows for quite optimistic time steps 

('dynamic'). 



Now, we would like to see the result after run the code. The result is: 

 

After seeing the result, it is worth asking the following question: What is the 

result means ?. 

Firstly, we will see in a video how does CO2 moving in deep reservoirs after 

injection. 

Secondly, I’m going to explain the relative circle. 

        Residual (traps): this phase of trapping happens very quickly as the porous 

rock acts like a tight, rigid sponge. As the supercritical CO2 is injected into the 

formation it displaces fluid as it moves through the porous rock. As the CO2 

continues to move, fluid again replaces it, but some of the CO2 will be left 

behind as disconnected – or residual – droplets in the pore spaces which are 

immobile, just like water in a sponge. This is often how the oil was held for 

millions of years. 

      Residual: Residually trapped CO2 outside free plume and 

residual traps. 

       Residual (plume): CO2 still in the free-flowing plume, but destined to be 

left behind after imbibition. 

Movable: the movable CO2 plume never grows large, and as it moves it is 

quickly dissolved and does not migrate far. On the other hand, since the brine 



below the plume is saturated with CO2 at all times, no additional dissolution 

occurs in areas where the plume remains present.  

Leaked: CO2 that has left the simulated domain. 

 

Some important equations used in this simulation: 

 

• Darcy’s law for a single-phase fluid:  �⃗� =
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• Buckley-Leverett transport equation: ut + f (u)x = 0                       (3) 
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