
Project work 3
Parameter estimation of stochastic processes with neural networks

Dávid Kovács

Supervisor: András Lukács

1 Introduction

There are several stochastic processes that are important in theoretical finance,
but barely usable in practice, due to the lack of methods to estimate their
parameters. However, often it is possible to generate (discretized) trajectories
from the processes in question. If we can generate trajectories of a stochastic
process, then we can also train neural networks on the generated trajectories
for the parameter estimation of the process. This chain of thought also outlines
the goal of this work. We want to construct estimators via deep learning, for
processes that are relatively easy to generate but hard to estimate by methods
of classical statistics. The deep learning modules referenced throughout this
work are described in [4].

2 Bayesian estimation with deep learning

The introductory statement regarding the relation between generation and pa-
rameter estimation remains true in a much more general setting. This can be
formalized as follows, pointing out that estimators constructed this way are
Bayesian in nature. Let ϑ be the set of the possible parameters and let P be the
prior distribution on ϑ. Then ∀ϑ ∈ Θ let Qϑ : X → [0, 1] be the distribution in-
dexed by ϑ . Moreover let L : ϑ2 → R+ be a loss function. ∀ϑ ∈ ϑ let Gϑ ∼ Qϑ

be a generator. We can then sample ϑ1, ϑ2, . . . , ϑn from distribution P . Then
we can create the learning set (Gϑ1

, ϑ1), (Gϑ2
, ϑ2), . . . , (Gϑn

, ϑn) where n can
be arbitrarily large. The goal of training a neural network on this set with loss
function L is trying to find the estimator S that minimizes the Bayesian risk

RP (S) =

∫
ϑ

∫
X
L(t, S(x))Qt(dx)P (dt).

In many ways datasets generated this way are ideal for training neural net-
works. First of all, the data is labelled perfectly, assuming that the generators
are functioning correctly. Second of all, we have practically infinite unique train-
ing data. This is due to the fact, that if the generation is fast enough then we

1



can generate enough data to eliminate the need for reusing any (Gϑ, ϑ) pairs. In
practice this means that during the training process every batch is generated on
the fly and one epoch simply means a certain number of training pairs. Using
unique data means that overfitting is not possible, hence training losses can be
treated as validation losses.

3 Estimation of shape, location and scale with
deep learning

Let Θ be the set of shape parameters, now let Θ∗ = Θ×R×R+ be the location
and scale extended parameter set. For any (θ, ν, λ) = ϑ∗ ∈ Θ∗, Qϑ∗ is defined
as the distribution of λX + ν · v0, where X ∼ Qϑ and v0 ∈ X is the predefined
location basis. We want to estimate ϑ, ν and λ. Put into the context of Section
2, we may think that having these two extra parameters means having Θ∗ as
the Bayesian parameter set. However, in the following we propose a way to
solve the problem defined by Θ∗, while actually working on just Θ. We achieve
this by defining neural modules, that combined appropriately result in neural
networks, that can extrapolate to Θ∗ after being taught on Θ.

Before we begin, some explanation is in order about the notation. Modules
will have capital letters as names, suggestive of their role, eg., E stands for
embedding, A stands for average and P stands for projection. They will have ν,
λ as lower or upper indicies. Lower indices will suggest some kind of invariance
and upper indices will suggest some kinds of additivity (or homogeneity) to the
respective parameters. Moreover, the abbreviation seq2vec seq will be used to
mean modules embedding sequences to sequences of vectors, and vec2scal will
mean modules projecting vectors into scalars. Furthermore, vec seq2vec will
mean modules reducing sequences of vectors into vectors.

3.1 Homogeneous modules

Here we propose a homogeneous seq2vec seq neural module Eλ, ie., a module
having Eλ(λx) = λEλ(x). A straightforward way to implement such a module is
having a multilayer 1D convolution module with no bias and PReLU activations
between the layers. We also consider a homogeneous vec2scal module Pλ. A
possible easy way to implement Pλ is having any vec2scal MLP with no bias
and PReLU activation between the layers. And finally, let Aλ be an adaptive
average pooling layer, which is a homogeneous vec seq2vec module.

The homogeneity of Aλ is trivial. To check the homogeneity of Eλ and Pλ,
note that when there is no bias convolutional and fully connected layers are
homogeneous, and the PReLU activation is homogeneous as well. So Eλ and
Pλ are compositions of homogeneous functions, so they are homogeneous.

2



3.2 Scale-invariant modules

In this subsection we propose a scale-invariant vec2vec module Mλ. For clarity,
scale invariance means Mλ(λx) = Mλ(x),∀λ ∈ R, x ∈ X . Such a module can

be implemented as Mλ(x) =
x

Pλ(x)
. To see the scale-invariance of Mλ, we can

write

Mλ(λx) =
λx

Pλ(λx)
=

λx

λPλ(x)
=

x

Pλ(x)
= Mλ(x).

3.3 Location-additive modules

Here we propose a location-additive and homogeneous seq2scal module Mν,λ.
By location additivity we meanMν,λ(x+νv0) = Mν,λ(x)+ν. LetB be a sec2scal

linear module, then let Mν,λ(x) = B(x)
B(v0)

. To check the location additivity
property, we can write

Mν,λ(x+ νv0) =
B(x+ νv0)

B(v0)
=

B(x)

B(v0)
+ ν

B(v0)

B(v0)
= Mν,λ(x) + ν.

And the homogeneity is trivial as B is a linear module. We implemented B as
the composition of a single 1D convolution layer, an adaptive average layer and
a single fully connected linear layer. And by linearity, we mean having no bias
and no activation function.

3.4 Location-invariant modules

Here we propose a location-invariant, homogeneous sec2sec module Mλ
ν . By

location invariance we mean Mλ
ν (x + νv0) = Mλ

ν (x),∀ν ∈ R, x ∈ X . We can
implement this module with Mλ

ν (x) = x − Mν,σ(x) v0. To see the location-
invariance of Mν , we can write

Mλ
ν (x+ νv) = (x+ νv0)−Mν,λ(x+ νv0) v0 =

= x+ νv0 − (Mν,λ(x) + ν) v0 = x−Mν,λ(x) v0 = Mλ
ν (x).

And the homogeneity is trivial.

3.5 Parameter estimation

For the estimation of ϑ, let Mϑ = P ◦Mλ◦Aλ◦Eλ◦Mλ
ν , where P is an arbitrary

vec2sec MLP. This way, Mϑ is a scale-invariant and location-invariant neural
network. Therefore, it suffices to train and validate Mϑ on Θ. And of course
any loss will be the same on Θ∗ as on Θ.

For the estimation of λ, let Mλ = Pλ◦Aλ◦Eλ◦Mλ
ν , which is a homogeneous

and location-invariant neural network. Interestingly, it suffices to train Mλ on
Θ as well, with constant λ = 1 labels. After having been trained on Θ, Mλ

works on Θ∗ as well, because it is invariant to ν and can extrapolate to λ ̸= 1.
To see this let ϑ∗ ∈ Θ∗, and let X ∼ Qϑ∗ . Then X = λX0 + νv0, where

3



X0 ∼ Qϑ. We can use the scale-invariance and homogeneity of Mλ to write
Mλ(λX0 + νv0) = λMλ(X0). Then (Mλ(X) − λ)2 = λ2(Mλ(X0) − 1)2. So
having λ ̸= 1 means a λ2 multiplier to the squared error. Which is the best one
can hope for, as I(ϑ, ν, λ) = I(ϑ, ν, 1)/λ2, where I is the Fisher information.
This conclusion may come as a surprise, because this means that the model can
learn to estimate a parameter, that may not even be implemented.

For the estimation of ν, let Mν = Pλ ◦ Aλ ◦ Eλ ◦ Mλ
ν + Mν,λ, which is

a homogeneous and scale-additive neural network. Similarly, it can be trained
on Θ with constant ν = 0 labels. To see this we can write Mν(λX0 + νv0) =
λMν(X0)+ν. Then (Mν(X)−ν)2 = λ2(Mν(X0)−0)2. So having ν ̸= 0 makes
no difference in the squared error. However λ ̸= 1 constitutes a λ2 multiplier
again, which is an unavoidable fact because of the Fisher information.

3.6 Consistency

In this subsection we examine the consistency ofMϑ, assuming sequential input.
If we train Mϑ on some fixed series length N , there is no guarantee that the
Bayesian risk will descrease when we validate on some N ′ > N series length.
And there is even less guarantee that the model will be consistent. However if
the input sequence is stationary and the location base v0 is constant, then Mϑ

has some desirable properties.
To recap, Mϑ = P ◦ Mλ ◦ Aλ ◦ Eλ ◦ Mλ

ν with an arbitrary vec2scal MLP
P . The output of Mλ

ν is stationary and just as importanly, it is the same
stationary sequence for every input length. The former comes from the fact,
that for stationary input, the output of a 1D convolution module is stationary as

well. And the latter comes from v0 being constant, so in Mν(x) = x− B(x)

B(v0)
v0,

B(v0) does not depend on the length of v0. Then obviosuly the output of Eλ is
stationary as well. Then Aλ has a stationary vector sequence as input, so the
output converges to the expected value mϑ of the stationary vector distribution.
Then Mϑ is consistent iff P (Mλ(mϑ)) = ϑ. We have no guarantee that this
holds, but mϑ is not only the expected value of the stationary distribution, but
that of Aλ’s output as well. So everything depends on Aλ ”working well on
average”, which is usually true to some extent. This last step was supported by
our empirical findings.

It is also worth mentioning, that in the above chain of thought we as-
sumed that the new series length N ′ > N is achieved by observing new values
X(N+1)/N ·T , X(N+2)/N ·T , . . . , XN ′/N ·T . This way the new values are the contin-
uation of the same stationary series. Having X0, XT/N ′ , X2T/N ′ , . . . , XT as the
new sample would usually forfeit the consistency. A notable exception is if X
is self-similar, because that way the new stationary distribution is the same as
the old one, only it is scaled differently, but M is scale-invariant so that does
not count.

4



4 Fractional Brownian motion

The aforementioned lack of estimators is somewhat less apparent in the case of
the fractional Brownian motion, as the Higuchi method [1] is a fairly efficient
estimator for the Hurst exponent. For this reason, trying to estimate the Hurst
exponent of the fractional Brownian motion is an adequate first step to gauge the
viability of deep learning based parameter estimation. Therefore our first goal
is to construct an estimator for the Hurst exponent of the fractional Brownian
motion, that outperforms the Higuchi method.

4.1 Parametrizing the fractional Brownian motion

We want to estimate the parameters of the process
(
σBH

t + µt
)
t∈[0,T ]

, where

H ∈ (0, 1), µ ∈ R, σ ∈ R+ and BH is a fractional Brownian motion with Hurst
exponent H. At first glance, there are 4 parameters: H, µ, σ and practically
even T is a parameter, as we can only observe discretized trajectories of this
process, thus we have no knowledge of the underlying time interval. However,
using better parametrization, it is revealed that we actually only have shape
parameter ϑ = H parametrizing (BH

t )t∈[0,1]. And adding scale parameter λ =
σTH , and location parameter ν = µT with basis v0 = (t)t∈[0,1] yields every
processes parametrized above. To see this we will use the self-similarity of the
fractional Brownian motion to write

λ ·
(
BH

t

)
t∈[0,1]

+ ν · (t)t∈[0,1] =
(
σTHBH

t + µTt
)
t∈[0,1]

d
=
(
σBH

t + µt
)
t∈[0,T ]

.

So we have a problem defined by the set of shape parameters Θ = (0, 1)
and as described in Section 3, we extend Θ into Θ∗. As shown in Section
3, we only need a prior distribution on Θ, for which a reasonable choice is

U(0, 1). And obviously we cannot work with
(
σBH

t

)
t∈[0,1]

and (t)t∈[0,1], we

need to discretize them in {0, 1/N, 2/N, . . . , 1 − 1/N, 1}, assuming we have N
equidistant observations.

With these and the results of Section 3 in mind, we have neural networks
Mϑ, Mλ and Mν readily available for the estimation of ϑ = H, λ = σTH and
ν = µT .

4.2 Data generation and training

To be able to train Mϑ, we need to generate observations from Qϑ for arbitrary
ϑ ∈ Θ. In other words, ∀H ∈ (0, 1) we need to generate unscaled and undrifted
fBm sequences on [0, 1] with Hurst exponent H. For this purpose, we used a
Python implementation of the method described in [2]. The Python version was
implemented by I. Ivkovic and D. J. Boros. Having a fast generator is highly
beneficical, because to achieve the results documented in the next subsection,
we needed to train the model for 300 epochs. Here one epoch means 100000

5



Squared Bayesian risk of Ĥ Higuchi Mϑ
200

N = 200 0.00416 0.00200
N = 400 0.00197 0.000985
N = 800 0.00105 0.000522
N = 1600 0.00058 0.000304
N = 3200 0.000353 0.000212
N = 6400 0.000231 0.000177
N = 12800 0.000151 0.000163

Table 1: Squared Bayesian risk of the Higuchi estimator and Mϑ for different
input length and fixed N = 200 training sequence length

unique input sequences (and of course every epoch is unique, there is no reusage
of data).

We want Mϑ to be consistent to some extent, so we need stationary input.
The fractional Brownian motion is not stationary, however, its increment are. So
we trainMϑ on fBm increments. This means that we need to use the increments
of v0 as well, which would be the vector (1/N, . . . , 1/N). However as mentioned
in Subsection 3.6, having a v0 independent of N is vital to the consistency. So
we simply use v0 = (1, . . . , 1). In practice this makes no difference to the validity
of Mϑ.

4.3 Results

At this work, we only document the results of estimating θ = H. We pit Mϑ

against the Higuchi method, which is a statistical estimator for H, that works
on fractional Brownian motions with scaling but no drift. We test the two
estimators on undrifted, unscaled fBm sequences. Both estimators would yield
the same result on scaled input. However, while Mϑ would give the same results
for drifted input, the Higuchi estimator would be completely off.

We will denote a version of Mϑ trained on length N by Mϑ
N . After train-

ing Mϑ on fixed N = 200 length, we have the results of Table 1 validating on
different N values compared to the Higuchi method. Mϑ indeed has some con-
stistency, but the rate of the consistency vanishes as N increases. In constrast,
the Higuchi method has better consistency and it becomes the better option for
N = 12800. But keep in mind that Mϑ solves a harder, more general problem
as it can deal with drifted fBm series. Also, forcing Mϑ to be consistent is not
necessary right now, as we can train seperate models for different ranges of N .
However, in a use case where we do not have infinite training data, having a
consistent model could be beneficial.

Observe what happens when we fine-tune seperate models for the N values
of Table 1. In practice, we train a model for N = 200, then fine-tune that model
for N = 400, then fine-tune the new one for N = 800 and so on. The fine-tuning
required is usually only 1 or 2 epochs. We also observe the performance of the

6



Squared Bayesian risk of Ĥ Higuchi Mϑ
N Mϑ

12800

N = 200 0.00416 0.00200 0.00214
N = 400 0.00197 0.00097 0.00106
N = 800 0.00105 0.000475 0.000526
N = 1600 0.00058 0.000237 0.000249
N = 3200 0.000353 0.000125 0.000125
N = 6400 0.000231 0.000065 0.000064
N = 12800 0.000151 0.0000326 0.0000326

Table 2: Squared Bayesian risk of the Higuchi estimator and Mϑ for different
input length and different training (fine-tuning) sequence length

last model, Mϑ
12800 for shorter sequences. As we can see from Table 2, by fine-

tuning for every N value, we have perfect 1/N rate consistency. So if one has
enough resources, the fine-tuning method is the way to go. In this case this
would mean having 8 different versions of the same model, and using each one
when appropriate. Finally, we should note that these 8 seperate models are
capable of parameter estimation on input lengths close to the length they were
trained on, eg., a model fine-tuned for N = 1600 can yield basically the same
accuracy for N = 3200 as the one fine-tuned on N = 3200. Which means, that
we have every possible input length covered with a better rate of consistency
than the Higuchi estimator. Also, it is wort noting that Mϑ

12800 is very close to
the multiple-headed version in performance, so it is also a viable option.

We conclude this section with Figure 1, which plots the mean squared error
of Mϑ

200 and the Higuchi method as a function of H. It shows that even on
sequences of length 200, Mϑ works better for every H. As N increases this
superiority of Mϑ only increases. We could also reduce the loss of Mϑ by
about 10% if we turned off the initial Mλ

µ module (so it would not work for
drifted fBm).

5 Fractional Ornstein-Uhlenbeck process

The Fractional Ornstein-Uhlenbeck (FOU) process fits more the description in
the Introduction. It is the fractional noise driven version of the well-known
and widely used Ornstein-Uhlenbeck (OU) process. However, its parameter
estimation is far more complicated than that of the OU process. As we will see,
the few existing estimators are fairly easily surpassed by our DL-based approach.

5.1 Parametrizing the fractional Ornstein-Uhlenbeck pro-
cess

We want to estimate the parameters of the process (Xt)t∈[0,T ], where

7



Figure 1: The mean squared error of the Higuchi method and Mϑ, plotted as
a function of H.

Xt = X0 − α

∫ t

0

(Xs − µ) ds+ σBH
t (∀t ∈ [0, T ]), (1)

with T, α, σ ∈ R+, H ∈ (0, 1) and µ ∈ R. At first glance, there are 5 parameters:
α, H, µ, σ and even T seems to be an unknown parameter. However, we will
show that there are actually only two shape parameters: ϑ1 = αT and ϑ2 = H
parametrizing processes (Xt)t∈[0,1], where

Xt = X0 − αT

∫ t

0

Xs ds+BH
t (∀t ∈ [0, 1]). (2)

And with the additional location parameter ν = µ (with basis v0 ≡ 1) and scale
parameter λ = THσ we have every process parameterized in (1). To see this,
multiply each side of (2) by λ and add µ to both sides,

λXt + µ = λX0 + µ− αT

∫ t

0

(λXs + µ)− µds+ λBH
t (∀t ∈ [0, 1]).

Using that λBH
t

d
=σBH

tT we have

Yt = Y0 − αT

∫ t

0

Ys − µds+ σλBH
tT (∀t ∈ [0, 1]),

with Y = λX + ν. As a final step, substitute u = tT into the equation and
r = sT into the integral

Yu/T = Y0/T − α

∫ u

0

(Yr/T − µ) dr + σBH
u (∀u ∈ [0, T ]).

8



So we started with (Xt)t∈[0,1] parametrized by (2), scaled it with λ and shifted it
with ν, and we arrived at (Yu/T )t∈[0,T ], which is a process parametrized by (1).
The only thing left to consider is the role of X0 in (2). We need a distribution
to yield the initial X0 value. Let [−δ(α,H), δ(α,H)] be the support of this
distribution, where δ : R+ × (0, 1) → R+. Then we have [µ− λδ(α), µ+ λδ(α)]
as the support of the distribution of Y0. With an appropriate choice of δ,
this interval will contain the stationary FOU distribution with high probability.
Choosing δ requires further investigation, for now let δ ≡ 10.

In conclusion, the FOU process is indeed parametrized by Θ = R+ × (0, 1),
and the rest of the parameters are the result of Θ being extended into Θ∗. So
for estimating ϑ1 = αT and ϑ2 = H we have Mϑ, for ν = µ we have Mν and
for λ = THσ we have Mλ.

5.2 Data generation and training

As before, we need to generate instances from any distribution in {Qϑ : ϑ ∈ Θ}.
In this case, this means generating (Xt)t∈[0,1] processes satisfying

Xt = −αT

∫ t

0

Xs ds+BH
t (∀t ∈ [0, 1]).

A method developed and implemented by I. Ivkovic was used to generate the
processes in question.

To train our neural networks, we need a distribution to generate H and α.
The former is straightforward, we can have H ∼ U(0, 1). The distribution for
α is more problematic. First of all, for large α values the simulation becomes
unstable. Second of all, The FOU process converges to the constant X ≡ µ
process if α → ∞. So after a certain α treshold there is little difference between
the corresponding FOU distributions. Which means we should put less weight
on large α values, as getting those right is less important than getting small α
values right. This convergence of course only causes a problem for Mϑ. For the
other two esimators it might even help. For now, we use α ∼ U(0, 10), but this
will probably change in future works.

5.3 Partial results

As a baseline, we will use the Nualart estimator, described in [3]. This estimator
works on FOU processes with µ = 0 and gives an estimate for H, σ and α. We
will fix T = 1, so θ1 = α, λ = σ.

First, compare Mϑ to the Nualart estimator for the estimation of H. The
squared Bayesian risks can be seen in Table 3. Clearly, Mϑ has a clear edge
over the Nualart method. Moreover, as opposed to the Nualart estimator, Mϑ

works even if µ ̸= 0. One thing that is different from the fBm case, is that now
Mϑ

12800 does not work as well for shorter sequences. This is probably due to
the FOU not being stationary just ergodic.

Now compare the Nualart estimator for σ to Mλ. The results of this com-
parison can be seen in Table 4. Here the Bayesian paradigm is of course still

9



Squared Bayesian risk of Ĥ Nualart Mϑ
N Mϑ

12800

N = 800 0.00152 0.000487 0.00586
N = 1600 0.000736 0.000250 0.00200
N = 3200 0.000367 0.000136 0.000227
N = 6400 0.000185 0.000071 0.0000790
N = 12800 0.00009 0.000038 0.000038

Table 3: Squared Bayesian risk of the Nualart estimator and Mϑ for different
input length and different training (fine-tuning) sequence length

Squared Bayesian risk of σ̂ Nualart Mλ
N

N = 800 0.0780 · σ2 0.0326 · σ2

N = 1600 0.0446 · σ2 0.0225 · σ2

N = 3200 0.0263 · σ2 0.0162 · σ2

N = 6400 0.016 · σ2 0.011 · σ2

N = 12800 0.009 · σ2 0.0127 · σ2

Table 4: Squared Bayesian risk of the Nualart estimator and Mλ for different
input length and different training (fine-tuning) sequence length

understood w.r.t. H and α, and there is a σ2 multiplier for the risk of σ̂ (see
Subsection 3.5). As we can see, Mλ

N performs better than the Nualart method.
However, the advantage of Mλ

N decreases as N increases. And for N = 12800,
Mλ could not yet be satisfactorily trained.

Comparing the estimates for α and finding an estimator to which we can
compare Mν are left to future works.

6 Conclusion

We proposed three neural network prototypes that can be used in a wide variety
of sequential modeling problems. Altough they have been only tested out in a
handful of scenarios, we believe they can yield better results than the existing
statistical estimators in the majority of situations. Also, once these models get
more solidified, training them for a new problem will be significantly easier then
searching for existing statistical methods.

References

[1] Higuchi, T. (1990). Relationship between the fractal dimension and the
power law index for a time series: A numerical investigation. Physica D:
Nonlinear Phenomena.

10



[2] Kroese, D. P. & Botev, Z. I. (2014). Spatial Process Simulation. Stochas-
tic Geometry, Spatial Statistics and Random Fields(pp. 369-404). Springer
International Publishing.

[3] Yaozhong Hu, David Nualart & Hongjuan Zhou (2017). Parameter estima-
tion for fractional Ornstein–Uhlenbeck processes of general Hurst parameter.
https://arxiv.org/abs/1703.09372.

[4] Goodfellow, I., Bengio, Y. & Courville, A. (2016). Deep learning. MIT Press.

11


	Introduction
	Bayesian estimation with deep learning
	Estimation of shape, location and scale with deep learning
	Homogeneous modules
	Scale-invariant modules
	Location-additive modules
	Location-invariant modules
	Parameter estimation
	Consistency

	Fractional Brownian motion
	Parametrizing the fractional Brownian motion
	Data generation and training
	Results

	Fractional Ornstein-Uhlenbeck process
	Parametrizing the fractional Ornstein-Uhlenbeck process
	Data generation and training
	Partial results

	Conclusion

