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Introduction

Lack of estimators

There are several stochastic processes that are important in
theoretical finance, but barely usable in practice, due to the lack of
methods to estimate their parameters.

Abundance of generators

However, often it is possible to generate (discretized) trajectories
from the processes in question. If we can generate trajectories of a
stochastic process, then we can also train neural networks on the
generated trajectories for the parameter estimation of the process.



Bayesian estimation with deep learning

Let Θ be the set of the possible parameters and let
P ∶ B(Θ)→ [0,1] be the prior distribution. Then ∀ϑ ∈ Θ let
Qϑ ∶ B(X )→ [0,1] be the distribution indexed by ϑ . Moreover let
L ∶ Θ2 → R+ be a loss function. ∀ϑ ∈ Θ let Gϑ ∼ Qϑ be a
generator. We can then sample ϑ1, ϑ2, . . . , ϑn from distribution P .
Then we can create the learning dataset
(Gϑ1 , ϑ1), (Gϑ2 , ϑ2), . . . , (Gϑn , ϑn) where n can be arbitrarily
large.

The goal of training a neural network on this set with loss function
L is trying to find the estimator S that minimizes the Bayesian risk

RP (S) = ∫
ϑ
∫X L(t, S(x))Qt(dx)P (dt).



Ideal learning dataset

Perfect labeling

The data is labeled perfectly, assuming that the generators are
functioning correctly.

Infinite unique training data

If the generation is fast enough then we can generate enough data
to eliminate the need for reusing any (Gϑ, ϑ) pairs. In practice this
means that during the training process every batch is generated on
the fly and one epoch simply means a certain number of training
pairs. Using unique data means that overfitting is not possible,
hence training losses can be treated as validation losses.



Estimation of shape, location and scale with deep learning

Let Θ be the set of shape parameters, now let Θ∗ = Θ × R × R+ be
the location and scale extended parameter set. For any
(ϑ, ν, λ) = ϑ∗ ∈ Θ∗, Qϑ∗ is defined as the distribution of
λX + ν ⋅ v0, where X ∼ Qϑ and v0 ∈ X is the predefined location
basis. We want to estimate ϑ, ν and λ.

We will solve the problem defined by Θ∗, while actually working on
just Θ. We achieve this by defining neural modules, that combined
appropriately result in neural networks, that can extrapolate to Θ∗

after being taught on Θ.



Extrapolation from Θ to Θ∗

Let X0 ∼ Qϑ for some ϑ ∈ Θ. And let X = λX0 + νv0.

Mϑ(X) =Mϑ(X0)

(Mϑ(X) − ϑ)2 = (Mϑ(X0) − ϑ)2

Mλ(X) = λMλ(X0)

(Mλ(X) − λ)2 = λ2(Mλ(X0) − 1)2

Mν(X) = λMν(X0) + ν

(Mν(X) − ν)2 = λ2(Mν(X0) − 0)2



Homogeneous modules (λ)

Homogeneity

M(λx) = λM(x)

Eλ ∶ seq → vec seq (embedding)

Let Eλ be a multilayer 1D convolution module with no bias and
PReLU activations between the layers.

Aλ ∶ vec seq → vec (average)

Let Aλ be an adaptive average pooling layer.

P λ ∶ vec→ scal (projection)

Let P λ be an MLP with no bias and PReLU activation.



Scale-invariant modules (λ)

Scale invariance

M(λx) =M(x)

Nλ ∶ vec→ vec (normalization)

Nλ(x) =
x

P λ(x)



Location-additive modules (ν)

Location additivity

M(x + νv0) =M(x) + ν

Mν,λ ∶ seq → scal

Mν,λ(x) = B(x)
B(v0)

,

where B ∶ seq → scal is the composition of a single 1D convolution
layer, an adaptive average layer and a single fully connected linear
layer. And by linearity, we mean having no bias and no activation
function.



Location-invariant modules (ν)

Location invariance

M(x + νv0) =M(x)

Cλ
ν ∶ seq → seq (centering)

Cλ
ν (x) = x −Mν,σ(x) ⋅ v0



Putting the modules together

Estimator for ϑ

Mϑ ∶= P ○Nλ ○Aλ ○Eλ ○Cλ
ν ,

where P ∶ vec→ scal is an MLP.

Estimator for λ

Mλ = P λ ○Aλ ○Eλ ○Cλ
ν

Estimator for ν

Mν = P λ ○Aλ ○Eλ ○Cλ
ν +Mν,λ



Fractional Brownian motion

We want to estimate the parameters of the process

(σBH
t + µt)

t∈[0,T ]
, where H ∈ (0,1), µ ∈ R, σ ∈ R+ and BH is a

fractional Brownian motion with Hurst exponent H.

We have shape parameter ϑ =H parametrizing (BH
t )t∈[0,1]. And

adding scale parameter λ = σTH , and location parameter ν = µT
with basis v0 = (t)t∈[0,1] yields every process parametrized above.

λ ⋅ (BH
t )

t∈[0,1]
+ ν ⋅ (t)t∈[0,1] = (σTHBH

t + µTt)
t∈[0,1]

d= (σBH
t + µt)

t∈[0,T ]



Fractional Brownian motion

Θ = (0,1) and we extend Θ into Θ∗. We only need a prior
distribution on Θ, for which a reasonable choice is U(0,1). And
obviously we cannot work with (σBH

t )
t∈[0,1]

and (t)t∈[0,1], we need

to discretize them in {0,1/N,2/N, . . . ,1 − 1/N,1}, assuming we
have N equidistant observations.

We have neural networksMϑ,Mλ andMν readily available for
the estimation of ϑ =H, λ = σTH and ν = µT .



Data generation and training

∀H ∈ (0,1) we need to generate unscaled and undrifted fBm
sequences on [0,1] with Hurst exponent H. For this purpose, we
used a Python implementation of the method described in [2]. The
Python version was implemented by I. Ivkovic and D. J. Boros.

Having a fast generator is highly beneficical, because to achieve
the results documented in the next subsection, we needed to train
the model for 300 epochs. Here one epoch means 100000 unique
input sequences (and of course every epoch is unique, there is no
reusage of data).



Results

We pitMϑ against the Higuchi method [1], which is a statistical
estimator for H, that works on scaled (but not drifted) fBm
sequences. Mϑ

N denotesMϑ trained on series of length N .

Squared Bayesian risk of Ĥ Higuchi Mϑ
N Mϑ

12800

N = 200 0.00416 0.00200 0.00214

N = 400 0.00197 0.00097 0.00106

N = 800 0.00105 0.000475 0.000526

N = 1600 0.00058 0.000237 0.000249

N = 3200 0.000353 0.000125 0.000125

N = 6400 0.000231 0.000064 0.000064

N = 12800 0.000151 0.0000326 0.0000326



Results (uniform superiority even for N = 200)



Thank you for your attention!
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