
Eötvös Loránd University

Faculty of Sciences

Institute of Mathematics

Prediction Error Method With
Momentum

Supervisor: Balázs Csanád Csáji
Author: CHTIBA REDA

Msc in APPLIED MATHEMATICS

Budapest, 05/12/2022

Introduction

There are many phenomenon in our world, and the pursuit of all sciences is to under-
stand them, and use them in many ways to optimize our lives. When it is possible to
completely understand the mechanism of a phenomenon, we can make a Mathematical
model, that is composed from a system and a set of input-output, that describes us it’s
dynamics and tell us how the effect of input will influence the system behaviour in the
future. System Identification is the field that deals with how to build and select such
models. One stage in selecting models, concerns how to estimates the model parame-
ters. It is known that it is impossible to create a perfect or true model, consequently,
in estimation of parameters, we usually hope to get as close as possible to the true
parameters. This notion of getting "close to", in optimization theory, means that we
estimate our parameters such that they are the minimum point of a chosen objective
function. In this essay, we will be interested in how to estimate the parameters for an
ARMAX model. Which stochastic method to use for such estimation? What are the
statistical properties of this method? How to possibly improve this method ? And a
numerical Implementation.

2

Contents

1 Prediction Error Method 4

1.1 ARMAX Model: . 4
1.2 General idea and Formalization of the Predictive Error Methods: 5
1.3 Statistical properties . 8

1.3.1 Consistency: . 8
1.3.2 Asymptotic distribution: . 9

1.4 Computational Aspects: . 10
1.4.1 Gauss-Newton Method for Prediction Error Method 11

1.5 Implementation . 12
1.6 PREM with Momentum: . 14
1.7 Conclusion: . 15

3

1

Prediction Error Method

1.1 ARMAX Model:

The ARMAX model, is a stochastic, time-invariant and linear model. Before, giving
the formula of the model and talking about its properties, It would be better to
give an intuitive approach, and although the ARMAX model is used in many ar-
eas, we shall keep explanations and interpretations restricted to the Time-Series area.

Definition A Discrete Time-Series {y(t)/t ∈ T}, is a discrete set of observa-
tions generated sequentially in time. Which can be thought of as a realization of a
process as well.

The ARMAX model is based on the idea that time series y(t) in which successive
values are highly dependent on themselves as well as dependent on some exogenous
variables u(t), can be usefully regarded as generated from a series of independent
shocks e(t) and the same exogenous variables u(t).In other words, we can think of the
inputs as e(t) and u(t), and the output is y(t). In these settings, the ARMAX model,
is formulated in a way that it describes the dynamic relation between the input and
output using time-invariant linear filters.

Autoregressive Moving Average with Exogenous Inputs (ARMAX)

The form of the model that we will use here will be :

y(t) =
B(q−1)

A(q−1)
u(t) +

C(q−1)

A(q−1)
e(t) (1, 1)

4

Where q−1 is the backward shift operator, y(t) the time series output, u(t) the
Exogenous inputs and e(t) the shocks or disturbances inputs that are generated as
White Noise with variance. var(e(t)) = λ2, also :
A
(
q−1

)
= 1 + a1q

−1 + . . .+ anaq
−na

B
(
q−1

)
= 1 + b1q

−1 + . . .+ bnb
q−nb

C
(
q−1

)
= 1 + c1q

−1 + . . .+ cncq
−nc

Here the parameter is the vector θ = [a1, ..., ana , b1, ..., bnb
, c1, ..., cnc]

T . Depending on
whether the variance of the noise is known or not it can also be added to θ.

1.2 General idea and Formalization of the Predictive

Error Methods:

[1]
Previously we talked about the ARMAX model and some of its properties, now we go
back our main topic, which is how to estimate the parameter vector θ. In estimation
theory, there are many methods that can be used for such task. One particular method,
easy to implement and has very nice statistical properties and algebraic structure, is
the famous, Least Square Method. The idea of the LSE in brief, is that it returns
a parameter that minimize the error propagated from the difference of the true out-
put(data) and the output formulated from a model. The LSE when applied to a static
dynamical model, would give a BLUE estimator under weak conditions, which in real
life can be easy to breach without paying a heavy price. But in a stochastic model, it
still an give an acceptable unbiased and consistent estimator, which is as well easy to
implement, but it only does under rather strict conditions, which can’t be trespassed
easily. That is why its better to consider other method or maybe modify the LSE. In
many applications, the model is not only used to describe the input-output relation,
but also for prediction. It therefore makes sense to determine the model parameter
θ such that the prediction error ϵ(t, θ) = y(t) − ŷ(t/t − 1, θ) is as small as possible.
ŷ(t/t− 1, θ) denotes the prediction of y(t) given past information up to and including
time (t-1) and θ.

The previous idea, induced a modification to the LSE, where the estimator of θ
would be the point that minimize the prediction error for the the model structure.
This kind of modification would leads us to the class of Prediction Error Methods
(PEM)

5

Formalization of the idea:

Model

The PEM could be given for any General Linear Model, but we will focus here on the
ARMAX Model.Let’s consider again the model :

y(t) =
B(q−1, θ)

A(q−1, θ)
u(t) +

C(q−1, θ)

A(q−1, θ)
e(t)

-e(t) is White Noise, with variance λ2. We will now put some constraint on the set
of possible parameter, and later we shall give an explanation about these conditions.
D = {θ/B(0, θ) = 0, C(0, θ) = 1, C(q−1) has zero outside the unit circle}

Predictor

The form of the predictor will be given as follows :

[ŷ(t/t− 1, θ) = L1(q
−1, θ)y(t) + L2(q

−1, θ)u(t), where L1(0, θ) = L2(0, θ) = 0]

-L1 and L2 are linear filters, the condition [L1(0, θ) = L2(0, θ) = 0]], ensures that we
have pure delays, which is consistent with how we described the predictor should be
(predicting from past data). Later, we will see how to derive the L1 and L2 filters for
the ARMAX Model.

Criterion

Concerning the criterion, it should be a scalar-valued function of all prediction errors
ϵ(1), ..., ϵ(N) assuming we have a sample of size N.This function should asses the
performance of the predictors used, and the objective would be to minimize the
criterion as to choose the best predictor.

Looking at the prediction error, we see that for each choice of the model structure,
predictor and criterion, we can define a Prediction Error Method. Since we already
fixed a model(ARMAX), we only ought to decide how to choose the predictor and the
criterion.
Predictor for ARMAX

The best way to choose a predictor is to choose an optimal one, i.e one that have
minimal error variance from all other predictors.

6

Let’s assume that u(t) and e(s) are uncorrelated for t < s.(This assumption is needed
for deriving the optimal predictor, and it’s not a strict one because it usually hold)
Derivation :

y(t) =
B(q−1, θ)

A(q−1, θ)
u(t) +

C(q−1, θ)

A(q−1, θ)
e(t)

y(t) =
B(q−1, θ)

A(q−1, θ)
u(t) +

(C(q−1, θ)

A(q−1, θ)
− 1

)
e(t) + e(t)

y(t) =
B(q−1, θ)

A(q−1, θ)
u(t) +

(C(q−1, θ)

A(q−1, θ)
− 1

)[A(q−1, θ)

C(q−1, θ)
y(t)− B(q−1, θ)

C(q−1, θ)

]
+ e(t)

y(t) =

[(
1− A(q−1, θ)

C(q−1, θ)

)
y(t) +

B(q−1, θ)

C(q−1, θ)
u(t)

]
+ e(t) (2, 1)

Let z(t) =
(
1 − A(q−1,θ)

C(q−1,θ)

)
y(t) + B(q−1,θ)

C(q−1,θ)
u(t), and y∗ any arbitrary predictor given data

up to t-1, and z(t) is well defined because the polynomial C(z) has zeros outside the
unit circle.
Prediction Error Covariance matirx :

cov(y(t)− y∗(t), y(t)− y∗(t)) = cov(z(t) + e(t)− y∗(t), z(t) + e(t)− y∗(t))

= cov(z(t)− y∗(t), z(t)− y∗(t)) + cov(z(t)− y∗(t), e(t)) + cov(e(t), z(t) + e(t)− y∗(t))

because we assumed u(t) and e(s) are uncorrelated for t < s =⇒ cov(z(t)−y∗(t), e(t)) = 0 =⇒

= cov(z(t)− y∗, z(t)− y∗) + cov(e(t), z(t)− y∗(t)) + cov(e(t), e(t))

similary cov(e(t), z(t)− y∗(t),) = 0 =⇒

cov(y(t)− y∗(t), y(t)− y∗(t)) = cov(z(t)− y∗, z(t)− y∗) + λ2

=⇒ cov(y(t)− y∗(t), y(t)− y∗(t)) ≥ λ2

and equality is attained ⇐⇒ cov(z(t)− y∗(t), z(t)− y∗ = 0 ⇐⇒ z(t) = y∗(t))

*We were able to use the assumption about u(t) and e(t) is uncorrelated, because
z(t) had pure delay, which was only possible since we assumed that B(0)=0.*
From the prediction error covariance matrix, we see that a predictor y∗(t) is optimal
if and only if it is equal to z(t).

7

From (2,1), we can write the optimal predictor and the prediction error for
ARMAX as :

ŷ(t/t− 1, θ) =

[(
1− A(q−1, θ)

C(q−1, θ)

)
y(t) +

B(q−1, θ)

C(q−1, θ)
u(t)

]

ϵ(t, θ) = e(t) =

[
A(q−1, θ)

C(q−1, θ)
y(t)− B(q−1, θ)

C(q−1, θ)
u(t)

]
Criterion for ARMAX:

There are many possible different criterion depending on the model structure.The
importance is that we would like to pick a criterion such that it maps the prediction
errors into a scalar.Since the ARMAX model has scalar output y(t), consequently the
prediction error ϵ(t, θ) will also be scalar valued. Hence, we will use the following loss
function : [

VN(θ) =
1

N

N∑
t=1

ϵ(t, θ)2

]

The loss function here is nothing but the sample variance of the predictive errors based
on N data points.
To summarize, the PEM of the ARMAX, has three main component:
The loss function:

VN(θ) =
1

N

N∑
t=1

ϵ(t, θ)2

The formula of the predictors:

ϵ(t, θ) = e(t) =

[
A(q−1, θ)

C(q−1, θ)
y(t)− B(q−1, θ)

C(q−1, θ)
u(t)

]

The set of constraint:

D = {θ/B(0) = 0, C(0) = 1, C(q−1) has zero outside the unit circle}

1.3 Statistical properties

1.3.1 Consistency:

In this section we will go trough a brief summary of the statistical analysis of the
estimate θ̂N which denotes the minimum point of the previously described loss function

8

VN(θ). Let θ0 be the unique true parameter of the system, then θ0 also satisfies the
previously given ARMAX model (1,1). As stated before, the loss function adapted
in this essay is nothing but the sample variance of the predictor errors, i.e VN(θ) =
1
N

∑N
t=1 ϵ(t, θ)

2. Under the assumption of having stationary y(t),u(t), then according
to ergodicity, the sample variance will converges to the variance , as the sample size
grows larger, i.e VN(θ) −→ V∞(θ) where V∞(θ) = E[ϵ(t, θ)2], . Let’s analyse now the
variance of ϵ(t, θ):

ϵ(t, θ) = e(t) =

[
A(q−1, θ)

C(q−1, θ)
y(t)− B(q−1, θ)

C(q−1, θ)
u(t)

]

We have : y(t) =
B(q−1, θ0)

A(q−1, θ0)
u(t) +

C(q−1, θ0)

A(q−1, θ0)
e(t)

=⇒ ϵ(t, θ) =

[
A(q−1, θ)

C(q−1, θ)

][
B(q−1, θ0)

A(q−1, θ0)
−B(q−1, θ)

A(q−1, θ)

]
u(t)+

[
A(q−1, θ)

C(q−1, θ)

][
A(q−1, θ0)

C(q−1, θ0)

]
e(t)

θ, θ0 ∈ D =⇒ ϵ(t, θ) = e(t) + w(t) ,where w(t) is a term independent from e(t)

=⇒ E[ϵ(t, θ)2] ≥ E[e(t)2]

=⇒ E[ϵ(t, θ)2] ≥ λ0 ,where λ0 is the variance under θ0

The lower bound λ0 can only be attained iff θ̂N = θ0, this mean that if N → ∞ =⇒
θ0 minimize E[ϵ(t, θ)2], and this minimum point is by definition θ̂N . In conclusion,
although in the previous analysis we made some assumptions, generally those are
considered weak, and therefore we can say that the PEM estimate θ̂0 is consistent.

1.3.2 Asymptotic distribution:

Again, let θ̂N be the minimum point of VN(θ), and θ0 be the true parameter. This
implies that, V ′

N(θ) = 0.If we do a Taylor series expansion of V ′
N(θ) around θ0, we get

0 ≈ V
′

N(θ0) + V ”
N(θ0)(θ̂N − θ0)

For large N, the residuals of the approximation, will have faster convergence rate to 0
compared to (θ̂N − θ0), and V ”

N(θ0) will converge to V ”
∞(θ0). Assuming that V ”

∞(θ0) is
non singular then we have the following :

√
N
(
θ̂N − θ0

)
≈ −

[
V ”
∞(θ0)

]−1[√
NV

′

N(θ0)
]

9

Theorem: √
N
(
θ̂N − θ0

) dist−−→ N (0, P)

Where P = Λ

[
E[ψ(t, θ0)ψ(t, θ0)

T]

]
Such that , Λ is the White-Noise e(t) covariance matrix and ψ is the operator acting

on ϵ(t, θ) given by ψ(t, θ) = −
[
∂ϵ(t,θ)
∂θ

]T

Using the form of P given by the previous theorem, we can substitute θ0 by θ̂N

(The PEM Estimate), replace the Expectation operator by the sample covariance
matrix, i.e :

P = Λ

[
1

N

N∑
t=1

[ψ(t, θ̂N)ψ(t, θ̂N)
T]

]
, we get an estimate of P, which mean that the accuracy of θ̂N can be estimated.

1.4 Computational Aspects:

Unlike the LSE, a draw-back to the PEM method, is that ϵ(t, θ) wont depend linearly
on θ when it comes to minimizing the loss function VN(θ). This mean that the mini-
mum point of VN(θ) can not be found analytically.
One approach would be to use some numerical method to get an approximation of the
minimum point θ̂N ,but before elaborating on such approach, I would like to talk about
another way of possibly computing the minimum point.
Previously, we mentioned some statistical reasons on why the LSE would not be a
good choice to use.However, it is possible to modify the form of the ARMAX model,
to another form that is suitable for the implementation of the LSE, i.e let’s consider
here an alternate form :

y(t) = ϕT (t)θ + e(t)

,

where ϕT (t) =
[
−y(t−1), ...,−y(t−n),−u(t−1), ...,−u(t−n),−e(t−1), ...,−e(t−n)

]T
and θ =

[
a1, ..., an, b1, ..., bn, c1, ..., cn

]T
10

This alternating form is equivalent to (1,1), but doing so, we would face a problem
where, the LSE would be considering the measurements e(t − i) i ∈ [1, 2, ..., n]

which we don’t have. Of course, we can compromise again, and try to estimate those
unknown measurements, but at the end although it would be possible to achieve some
result, it won’t be a good one.Regardless, this idea of using the LSE, would still be
useful in some aspects, that will talk about later-on.

1.4.1 Gauss-Newton Method for Prediction Error Method

Going back to the first approach we mentioned before and since we previously assumed
that the Hessian of the loss function was non-singular, then we could proceed by using
a Newtone-Raphson method, to approximate our minimum point.
The N-R Algorithm is the following :

θ̂k+1 = θ̂k − αk

[
V ”
N(θ̂k)

]−1[
V

′

N(θ̂k)
]

θ̂k denotes the k-th iteration, αk is the gain coefficient, V ′
N and V ”

N are the gradient
and hessian respectively of the loss function.Next, let’s analyse this algorithm’s
computations.
Expressing V ′

N andV ”
N we have:

VN(θ̂) =
1
N

∑N
t=1 ϵ(t, θ)

2 =⇒ V
′
N(θ̂) =

[
− 2

N

∑N
t=1 ϵ(t, θ)ψ(t, θ)

]
=⇒ V ”

N(θ̂) =
[

2
N

∑N
t=1 ψ(t, θ)ψ(t, θ)

T
]
+
[

2
N

∑N
t=1 ϵ(t, θ)

∂2ϵ(t,θ)
∂θ2

]
The second term in V ”

N is quite cumbersome to compute, we will need to calculate
the Hessian of a scalar-valued-multi variable function for every iteration. It would
be very appealing if somehow we could get rid of that term.Well, we saw before that
as N get large and as θ approaches the true parameter θ0, we get that ϵ(t, θ) tend
to be White-Noise, and also becomes independent from ψ(t, θ) =⇒ ϵ(t, θ) becomes
independent from ∂2ϵ(t,θ)

∂θ2
=⇒ the second term will tend to 0 (Because of Ergodicity).

Thus, as N get large we have V ”
N(θ0) ≈

[
2
N

∑N
t=1 ψ(t, θ0)ψ(t, θ0)

T
]
.

Using the expression of V ′
N and V ”

N with the neglected term (supposing that N is
large for instance) then we get the following algorithm:

θ̂k+1 = θ̂k + αk

[2
N

N∑
t=1

ψ(t, θk)ψ(t, θk)
T
]−1[2

N

N∑
t=1

ϵ(t, θk)ψ(t, θk)
]

11

The last recursion formula corresponds to the Gauss-Newton Algorithm, and it is
known that G-N and N-R algorithms behaves similarly when N is big and θ̂k is close
the the minimum point. So in practice when our data set is very large and once we
have initial values for the first run then we can use the G-N algorithm, since it has
much simple calculations that the N-R algorithm.

Suppose now , we decided to use the G-N algorithm, then we will need to ini-
tialize. Where to find the first initial values? It could happen, that we have some
prior information about the model’s parameter, and hence use this information as
initial values, but what if we don’t have any of this knowledge? In this case, we will
go back to the LSE. We stated before in the beginning, the idea of using the LSE as
an estimation method on our model, and we gave some reasons on why the estimates
won’t be good. Regardless, we also mentioned that the estimates could be useful in
some aspects and sequentially it turns out that using the LSE as initial values for the
G-N algorithm could be a very efficient way to start.

1.5 Implementation

We generate sample-data from the following true system :(
1− 0.8q−1

)
y(t) =

(
0.7q−1

)
u(t) +

(
1 + 0.8q−1

)
e(t)

Where the input signal u(t) is white-noise takes value ±1 with one delay, independent
from the white-noise e(t) with variance λ2 = 1 and we will simulate the system using
N=10000 data-points. The output of this simulation, will be the input data u which
is a [10000.1] vector and the output data y which is also a [10000x1] vector.

Remark:

The true system we considered so far is consistent will all our assumptions, for example
we have a pure delay, C(0, q−1) = 1 and C(q−1) has zero outside the unit circle since
0.8 is < 1.
Experimenting: Now, let’s forget about the true parameters a1 = −0.8,b1 = 0.7 and
c1 = 0.8, let’s only consider the simulated data [y u]. We will skip the part, where we

12

identify which model we should use for our data (since this is not the topic of this
essay) and let’s believe that an ARMAX model fits our data which has the following
orders : A (q−1) = 1 + a1q

−1, B (q−1) = b1q
−1, C (q−1) = 1 + c1q

−1. So our objective
now is to estimate a1,b1 and c1, that is θ = [a1, b1, c1]

T

For our Implementation, we will use the Gauss-Newton approach, with αk = N/2,
and θ̂k = [a1k, b1k, c1k]

T

θ̂k+1 = θ̂k +
[N∑

t=1

ψ(t, θk)ψ(t, θk)
T
]−1[N∑

t=1

ϵ(t, θk)ψ(t, θk)
]

From, the iterative formula ,we see that we need data of both ϵ(t, θk) and
the gradient ψ(t, θk). Since, our sample data, N = 10000, then let PE(θk) =

[ϵ(1, θk), ϵ(2, θk), ..., ϵ(10000, θk)]
T , be a column vector that contains all prediction er-

rors data up to time 10000. Similarly , ψ(t, θk). at time t, will be a row vector
with the same dimension as θ, in our case ψ(t, θk) will be [3,1] row vector, so let
J(θk) = [ψ(1, θk), ψ(2, θk), ..., ψ(10000, θk)]

T , this is a []10000,3] Matrix. From these
notations, we can rewrite the algorithm formula as follows :

θ̂k+1 = θ̂k +
[
J(θk)

TJ(θk)
]−1[

J(θk)
TPE(θk)

]
To calculate the Matrix J(θk), we can apply the filter q−1

C(q−1,θk)
on the data stored in

the following [10000,3] Matrix : [−y, u, PE(θk)]. (More details in [1],chapter 7].
Below, is a figure that shows the evolution of the estimated parameters in 70 iterations.
The red,green and blue plot corresponds to a1k,b1k and c1k respectively, where we
initialized with θ̂1 = [0.1, 0.1, 0.1]T , we also marked the True parameters, -0.8,0.7 and
0.8 respectively with similar colors.

Figure 1.1: Simulation of a Wiener-Path

13

From the figure we can see that, our estimated parameters does converges to the
true parameters as the number of iterations grows.

1.6 PREM with Momentum:

Previously, we implemented the Prediction Error Method and we got good results ,
since our estimated parameters did indeed converge to the true one. Now, we would
like to think of a way to improve this algorithm, a natural way to do so is to add the
Momentum part to the iterative formula. One thing that is needed to be said, is that
previously , Doctor Balázs Csanád Csáji with other colleagues , has shown that for the
Least Mean Square with Momentum, there is unfortunately no direct improvement, but
a rather a trade-off between some deeper statistical properties behind the method that
should tweaked(For more details [2]). Consequently, the Prediction Error Methods, can
be thought of as generalization of the Least Mean Square, and therefore theoretically,
in basic implementation (that is not very well controlled) we should not really expect
anything. But, enough with the talk, and let’s proceed with our naive implementation
and see what kind of result we might get .
First , the Iteration formula for the PEM with Momentum will have the following
form, where βk is a gain coefficient.

θ̂k+1 = θ̂k +
[
J(θk)

TJ(θk)
]−1[

J(θk)
TPE(θk) + βk

[
θ̂k − θ̂k−1

]
Let’s do a similar experiment as before, in the Momentum case we need to initialize
θk for the first and second iterations. We set θ̂1 = [0.1, 0.1, 0.1]T as we did previously,
and for θ̂2 we get it from applying the PEM algorithm for one iteration. Below is a
table that describe the value of the estimated parameter using PEM with Momentum
at the last iteration. (with the same control we did for the previous experiment), and
it shows this last values for various βk gain coefficients.

From the table below , we Used similar initialization as the case without Momen-
tum, but unfortunately, the Matrix calculated in the algorithm becomes singular and
can not be computed. Although, we see that when the gain get smaller we get good
results, but that’s the same as saying that adding the Momentum doesn’t aids us in
our task.

14

Table 1.1: Comparing PEM with Momentum for different βk
βk θ̂70

≥ 10−3 NAN
≤ 10−3 ≈ [−0.8, 0.7, 0.8]

1.7 Conclusion:

We Saw an intuitive and theoretical construction of the Prediction Error Method. We
experimented with the method and got consistent result which is expected from the
theoretical part. For the PEM with Momentum, we tried to experiment with it as
well, but unfortunately we did not get any interesting results, like I said previously,
a special case of the PEM with Momentum, the LMS with Momentum, was proven
theoretically that there is a trade off, so for Implementing the PEM with Momentum,
much more work is needed to be done, maybe it happen that we experimented on a
special case of data where it doesn’t work and for others it works.

15

Bibliography

[1] Natke, H.G., 1992. System identification: Torsten söderström and petre stoica.

[2]Gerencsér, L., Csáji, B.C. and Sabanis, S., 2018, December. Asymptotic
Analysis of the LMS Algorithm with Momentum. In 2018 IEEE Conference on
Decision and Control (CDC) (pp. 3062-3067). IEEE.

16

