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Real life applications

mass density distribution
electric charge
wave equation (e.g water waves, sound waves)



Problem description

Let us consider the Poisson problem

—divB=f

—Au ="f =
4 {B:Vu

The problem will also satisfy the boundary
condition 0.2 {_ Au=f

Uogn = 9



Approximate the modulus of the gradient in a regular

domain
1
2D case: let 2 = (0,a) x (0,b), and we take h; = —
1
1
h, = No+1
Let us consider the Poisson problem with Dirichlet boundary condition
0’u  0%u 0
_W_W =f(x,y) x,y €

u(x,y) =0 X,y € 0N



The approximate solution u

First we have to estimate the solution u using the
Second order finite difference scheme




Matrix form of the approximate
solution u

A = triblockdiag(l,B,I)



The approximate of modulus of the gradient

After finding the approximate solution u, know we can approximate the
modulus of the gradient as follows




~ The results of 2D with f(x,y)
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The exact values of the gradient
Numerical values of the approximate |gradient|

Numerical values of the approximate gadient
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Grid points X,

Grid points X

The analytic solution of the [Vu| with The approximate solution of the [Vul The approximate solution of the |Vul
* N1and N2 =64 with N1 and N2 =64 with N1 and N2 =64 using the schemes
in the last figure
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Numerical solution to estimate the gradient in 3D regular
domain (cube)

Let let 2 = (0,1) x (0,1) x (0,1), and we take hy = h, = hy = Niﬂ

Consider the Poisson problem

—Au = f(x,y,2) X,V,Z € )
u(x,y,z)=0 X,y,Z € 02

To get the approximate solution of this problem we use the scheme

A (ih v Witk F Uik T Uikt Uik Uik T Ui — 6

h?
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The matrix form _
B = tridiag(—1,6,—1) € RNXN

C = triblockdiag(—I, B, —I) € RN *N*
Ay, = triblockdiag(—1,B,—I) € RN’ *N’

Where the matrix C
1S




The numerical estimation for the
gradient in cubic domain

In order to estimate the modulus of the gradient we will use the approximate
solution u at each point in the mesh points and different schemes

|"H- (1,91, 21 _:} —u f:_-"-'f-?'{':h Yo+ Zo )|

=

| Vu l To, Yo, 20 :' | =
‘V‘ o) -'I 1

(Estimate at the corner (0,0,0))

luler, g, ) — ulzo, Y, 2, Estimate the |Vu| on the faces

Vu(mo, yj, 2)| = [Ozuu(z0, Y5, 2t)| =

For estimating the points in {2 we use the central difference scheme to estimate first
the partial derivatives after that estimate |Vu/| .



N The numerical results result for estimate the modulus of the
— gradient

Let f(x,y,z) =d - e_R((x_a)2+(y_b)2+(z_c)2) a,b,c,d,R constants.

The plot of the modulus

R =8,a=0.01,b=0.01,c =0.99,d =2 R =8,a=0.01,b=0.01,c =0.01,d =2 R=8,a=099b=0.01,c =0.99,d =2



R =45,a=10.01,b =0.01,c =099,d =2

ys°



~ Approximate the numerical solution in
| 2D L-shape domain

Consider the Poisson problem with f=1 in 2 = (—1,1) x (—1,1) \ {(0,1) x (0,1)}

The solution u will be approximated using the five stencil approximation
method and based on the sppliting the domain into two parts

1 : .
-1 -0.8 -06 -04 -0.2 0.2 0.4 0.6 0.8

FigureO1: mesh grid points in L-shape domain



Numerical results

TI=N*(N+2):N:(2*N+1)*N;

T2=(2*N+1)*N-+1:N+1:NN(1);
i=1:length(T1)

A h(T1(),T2(1))=-1;

A h(T2(1),T1(1))=-1;

A _h=(1/(h"2))*A_h;
[x1,y1]=meshgrid(-1:h:0,1:-h:-1);
[x2,y2]=meshgrid(0:h:1,0:-h:-1); /1 N\
X=[x1:x2]; /<L
Y=[yl;y2]; LA AN
App_sol=[Y12;Y3]; ~A— AN
figure < ay N
surf(X,Y,App_sol) (S e— ]

0
=

a+b

(]
o
w0
1z




Figure02: Approximate solution u in L-shape domain




Singular element

Legend
U —

. singular edge.

: non-singular edge.

. strongly singular comer.
. weakly singular corner.

. non-singular corners.

Figure03: types of singularities
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