Numerical solution of elliptic problems with singularities

TAKI EDDINE DJEBBAR

Supervisor: Prof. János Karátson
20 ${ }^{\text {th }}$ May 2022

TAB:EOF CONIENIS

01

Real applictions and motivation

03
Approximate the solution u in a L-shape domain

02
Approximate the modulus of the gradient in a regular domain

04
Singular elements in 3D

Real life applications

- mass density distribution
- electric charge
- wave equation (e.g water waves, sound waves)

Problem description

Let us consider the Poisson problem

$$
-\Delta \mathrm{u}=\mathrm{f} \quad \Leftrightarrow \quad\left\{\begin{array}{c}
-\operatorname{div} B=f \\
B=\nabla u
\end{array}\right.
$$

The problem will also satisfy the boundary

$$
\text { condition } \partial \Omega \quad\left\{\begin{array}{l}
-\Delta u=f \\
u_{\mid \partial \Omega}=g
\end{array}\right.
$$

Approximate the modulus of the gradient in a regular domain

2D case: let $\Omega=(0, a) \times(0, b)$, and we take $h_{1}=\frac{1}{N_{1}+1}$, $h_{2}=\frac{1}{N_{2}+1}$
Let us consider the Poisson problem with Dirichlet boundary condition

$$
\begin{cases}-\frac{\partial^{2} u}{\partial x^{2}}-\frac{\partial^{2} u}{\partial y^{2}}=f(x, y) & x, y \in \Omega \\ u(x, y)=0 & x, y \in \partial \Omega\end{cases}
$$

The approximate solution u

First we have to estimate the solution u using the Second order finite difference scheme

$$
-\Delta_{h} u=\frac{-u_{i+1, j}+2 u_{i, j}-u_{i-1, j}}{h_{1}^{2}}+\frac{-u_{i, j-1}+2 u_{i, j}-u_{i-1, j+1}}{h_{2}^{2}}
$$

Matrix form of the approximate solution u

The approximate of modulus of the gradient

After finding the approximate solution u , know we can approximate the modulus of the gradient as follows

The results of 2D with $f(x, y)=2 \pi^{2} \sin (x) \sin (y)$

The analytic solution of the $|\nabla \mathrm{u}|$ with N1 and N2 $=64$

The approximate solution of the $|\nabla \mathrm{u}|$ with N1 and N2 =64

The approximate solution of the $|\nabla \mathrm{u}|$ with N1 and N2 $=64$ using the schemes in the last figure

Numerical solution to estimate the gradient in 3D regular domain (cube)

Let let $\Omega=(0,1) \times(0,1) \times(0,1)$, and we take $h_{1}=h_{2}=h_{3}=\frac{1}{N+1}$.
Consider the Poisson problem

$$
\left\{\begin{array}{cc}
-\Delta u=f(x, y, z) & x, y, z \in \Omega \\
u(x, y, z)=0 & x, y, z \in \partial \Omega
\end{array}\right.
$$

To get the approximate solution of this problem we use the scheme

$$
\Delta u(i h, j h, k h) \approx \frac{u_{i+1, j, k}+u_{i-1, j, k}+u_{i, j+1, k}+u_{i, j-1, k}+u_{i, j, k-1}+u_{i, j, k+1}-6 u_{i, j}}{h^{2}}
$$

The matrix form

$$
\begin{aligned}
& B=\operatorname{tridiag}(-1,6,-1) \in \mathbb{R}^{N \times N} \\
& C=\text { triblockdiag }(-I, B,-I) \in \mathbb{R}^{N^{2} \times N^{2}} \\
& A_{h}=\text { triblockdiag }(-I, B,-I) \in \mathbb{R}^{\mathrm{N}^{3} \times \mathrm{N}^{3}}
\end{aligned}
$$

$$
A_{h}=\left(\begin{array}{cccccc}
C & -I & & & & \\
-I & C & -I & & & \\
& -I & C & -I & & \\
& & \ddots & \ddots & \ddots & \\
& & & -I & C & -I \\
& & & & -I & C
\end{array}\right)
$$

Where the matrix C is
$C=\left(\begin{array}{ccccccc}B & -I & & & & \\ -I & B & -I & & & \\ & -I & B & -I & & \\ & & \ddots & \ddots & \ddots & \\ & & & -I & B & -I \\ & & & & -I & B\end{array}\right)$

The numerical estimation for the gradient in cubic domain

In order to estimate the modulus of the gradient we will use the approximate solution u at each point in the mesh points and different schemes
$\left|\nabla u\left(x_{0}, y_{0}, z_{0}\right)\right|=\frac{\left|u\left(x_{1}, y_{1}, z_{1}\right)-u\left(x_{0}, y_{0}, z_{0}\right)\right|}{\sqrt{3} h}$ (Estimate at the corner (0,0,0))
$\left|\nabla u\left(x_{0}, y_{j}, z_{k}\right)\right|=\left|\partial_{x} u\left(x_{0}, y_{j}, z_{k}\right)\right|=\frac{\left|u\left(x_{1}, y_{j}, z_{k}\right)-u\left(x_{0}, y_{j}, z_{k}\right)\right|}{h}$ Estimate the $|\nabla u|$ on the faces

For estimating the points in Ω we use the central difference scheme to estimate first the partial derivatives after that estimate $|\nabla u|$.

The numerical results result for estimate the modulus of the gradient

$$
\text { Let } f(x, y, z)=d \cdot e^{-R\left((x-a)^{2}+(y-b)^{2}+(z-c)^{2}\right)} \quad a, b, c, d, R \text { constants. }
$$

The plot of the modulus

$R=8, a=0.01, b=0.01, c=0.99, d=2$

$R=8, a=0.01, b=0.01, c=0.01, d=2$

$R=8, a=0.99, b=0.01, c=0.99, d=2$

$R=-23, a=0.01, b=0.01, c=0.99, d=2$

$$
R=45, a=0.01, b=0.01, c=0.99, d=2
$$

Approximate the numerical solution in 2D L-shape domain

Consider the Poisson problem with $\mathrm{f}=1$ in $\Omega=(-1,1) \times(-1,1) \backslash\{(0,1) \times(0,1)\}$
The solution u will be approximated using the five stencil approximation method and based on the sppliting the domain into two parts

Figure01: mesh grid points in L-shape domain

Numerical results

```
T1=N*(N+2):N:(2*N+1)*N;
T2=(2*N+1)*N+1:N+1:NN(1); % for calling the indices componentwise
for i=1:length(T1)
A_h(T1(i),T2(i))=-1; % modify A h in order to approximate the line S2 and S3
A_h(T2(i),T1(i))=-1;
end
A_h=(1/(h^2))*A_h;
[x1,yl]=meshgrid(-1:h:0,1:-h:-1);
[x2,y2]=meshgrid(0:h:1,0:-h:-1);
X=[x1;x2];
Y=[y1;y2];
App_sol=[Y12;Y3];
figure
surf(X,Y,App_sol)
```


The plotting of the numerical solution u

Figure02: Approximate solution u in L-shape domain

Singular element

Figure03: types of singularities

Thank you for your attention

国

Q Q
（20）㧱
（̈）ทヘ̂il
来

