Numerical solution of elliptic problems with singularities

TAKI EDDINE DJEBBAR

Supervisor: Prof. János Karátson

20th May 2022

TABLE OF CONTENTS

Real applications and motivation

03

Approximate the solution u in a L-shape domain

02

Approximate the modulus of the gradient in a regular domain

04

Singular elements in 3D

Real life applications

- mass density distribution
- electric charge
- wave equation (e.g water waves, sound waves)

Problem description

Let us consider the Poisson problem

$$-\Delta \mathbf{u} = \mathbf{f} \qquad \Leftrightarrow \qquad \begin{cases} -div \ B = f \\ B = \nabla u \end{cases}$$

The problem will also satisfy the boundary condition $\partial \Omega$ $(-\Delta u)$

$$\begin{bmatrix} -\Delta u = f \\ u_{\mid \partial \Omega} = g \end{bmatrix}$$

Approximate the modulus of the gradient in a regular domain

2D case: let $\Omega = (0, a) \times (0, b)$, and we take $h_1 = \frac{1}{N_1 + 1}$, $h_2 = \frac{1}{N_2 + 1}$ Let us consider the Poisson problem with Dirichlet boundary condition

$$\begin{cases} -\frac{\partial^2 u}{\partial x^2} - \frac{\partial^2 u}{\partial y^2} = f(x, y) & x, y \in \Omega\\ u(x, y) = 0 & x, y \in \partial\Omega \end{cases}$$

The approximate solution u

First we have to estimate the solution u using the Second order finite difference scheme

$$-\Delta_h u = \frac{-u_{i+1,j} + 2u_{i,j} - u_{i-1,j}}{h_1^2} + \frac{-u_{i,j-1} + 2u_{i,j} - u_{i-1,j+1}}{h_2^2}$$

Matrix form of the approximate solution u

$$B = \begin{pmatrix} 4 & -1 & & & \\ -1 & 4 & -1 & & & \\ & -1 & 4 & -1 & & \\ & \ddots & \ddots & \ddots & \\ & & & -1 & 4 & -1 \\ & & & & -1 & 4 \end{pmatrix}$$

A = triblockdiag(I, B, I)

$$A = \begin{pmatrix} B & -I & & & \\ -I & B & -I & & \\ & -I & B & -I & \\ & & \ddots & \ddots & \ddots & \\ & & & -I & B & -I \\ & & & & -I & B \end{pmatrix} \in \mathbb{R}^{N_1 \times N_1} \times \mathbb{R}^{N_2 \times N_2}$$

The approximate of modulus of the gradient

After finding the approximate solution u, know we can approximate the modulus of the gradient as follows

The results of 2D with $f(x, y) = 2\pi^2 sin(x)sin(y)$

The analytic solution of the $|\nabla u|$ with N1 and N2 =64

The approximate solution of the $|\nabla u|$ with N1 and N2 =64

The approximate solution of the $|\nabla u|$ with N1 and N2 =64 using the schemes in the last figure

Numerical solution to estimate the gradient in 3D regular domain (cube)

Let let $\Omega = (0,1) \times (0,1) \times (0,1)$, and we take $h_1 = h_2 = h_3 = \frac{1}{N+1}$.

Consider the Poisson problem

$$\begin{cases} -\Delta u = f(x, y, z) & x, y, z \in \Omega \\ u(x, y, z) = 0 & x, y, z \in \partial \Omega \end{cases}$$

To get the approximate solution of this problem we use the scheme

$$\Delta u(ih, jh, kh) \approx \frac{u_{i+1,j,k} + u_{i-1,j,k} + u_{i,j+1,k} + u_{i,j-1,k} + u_{i,j,k-1} + u_{i,j,k+1} - 6u_{i,j}}{h^2}$$

The matrix form

 $B = tridiag(-1,6,-1) \in \mathbb{R}^{N \times N}$ $C = triblockdiag(-I,B,-I) \in \mathbb{R}^{N^{2} \times N^{2}}$ $A_{h} = triblockdiag(-I,B,-I) \in \mathbb{R}^{N^{3} \times N^{3}}$

$$A_{h} = \begin{pmatrix} C & -I & & & \\ -I & C & -I & & \\ & -I & C & -I & \\ & & \ddots & \ddots & \ddots & \\ & & & -I & C & -I \\ & & & & -I & C \end{pmatrix}$$

Where the matrix C is

C =

$$\begin{pmatrix}
B & -I \\
-I & B & -I \\
& -I & B & -I \\
& \ddots & \ddots & \ddots \\
& & -I & B & -I \\
& & & -I & B
\end{pmatrix}$$

B

The numerical estimation for the gradient in cubic domain

In order to estimate the modulus of the gradient we will use the approximate solution u at each point in the mesh points and different schemes

 $\begin{aligned} |\nabla u(x_0, y_0, z_0)| &= \frac{|u(x_1, y_1, z_1) - u(x_0, y_0, z_0)|}{\sqrt{3}h} \\ |\nabla u(x_0, y_j, z_k)| &= |\partial_x u(x_0, y_j, z_k)| = \frac{|u(x_1, y_j, z_k) - u(x_0, y_j, z_k)|}{h} \end{aligned}$ (E)

(Estimate at the corner (0,0,0))

Estimate the $|\nabla u|$ on the faces

For estimating the points in Ω we use the central difference scheme to estimate first the partial derivatives after that estimate $|\nabla u|$.

The numerical results result for estimate the modulus of the gradient

Let
$$f(x, y, z) = d \cdot e^{-R((x-a)^2 + (y-b)^2 + (z-c)^2)}$$
 a, b, c, d, R constants.

The plot of the modulus

R = -23, a = 0.01, b = 0.01, c = 0.99, d = 2

R = 45, a = 0.01, b = 0.01, c = 0.99, d = 2

Approximate the numerical solution in 2D L-shape domain

Consider the Poisson problem with f=1 in $\Omega = (-1,1) \times (-1,1) \setminus \{(0,1) \times (0,1)\}$

The solution u will be approximated using the five stencil approximation method and based on the sppliting the domain into two parts

Figure01: mesh grid points in L-shape domain

Numerical results

T1=N*(N+2):N:(2*N+1)*N;

T2=(2*N+1)*N+1:N+1:NN(1); % for calling the indices componentwise

for i=1:length(T1)

A_h(T1(i),T2(i))=-1; % modify A_h in order to approximate the line S2 and S3 A h(T2(i),T1(i))=-1;

end

```
A_h=(1/(h^2))*A_h;
[x1,y1]=meshgrid(-1:h:0,1:-h:-1);
[x2,y2]=meshgrid(0:h:1,0:-h:-1);
X=[x1;x2];
Y=[y1;y2];
App_sol=[Y12;Y3];
figure
surf(X,Y,App_sol)
```


The plotting of the numerical solution u

Figure02: Approximate solution u in L-shape domain

Singular element

Figure03: types of singularities

Thank you for your attention

<u> </u>			00 00		O.R.	$\sqrt[4]{\mathbb{X}}$	B A	B A	<u> </u>
	<u>Л</u> 3,1ч						√x = (X+7)=	∮(X)	[X+7] ==
		[(x+y)=0]/∐\\	y y:log	83 57	+++=0 √× ↓		⊕⊖ ⊗®	45°	E=mc ²
		SIN a+b				h r		لیا کی	
	J J J J J J J J			×,					- 33