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I. HIDDEN MARKOV MODELS
A Hidden Markov Model (HMM) could be viewed as a noisy observation of a Markov chain. This model emerged

in the 1960s, and now it has important applications in signal processing, control theory, speech recognition and sequential
bioinformatics [4], [5]. In the HMM framework, there is a hidden Markov process that influences the observations, but we
cannot observe it directly. Usually, the inference for this hidden process is the task to solve, where the hidden process is our
real process of interest, such as a sequence of words in speech recognition or specific DNA regions in the DNA sequence.
An HMM has a transition model and an observation model. The transition model controls the hidden process, at each time
step, we stochastically move to the next hidden state. The observation model tells us how the observations are generated
from a hidden state. Each hidden state has a data generating distribution, these distributions came from a parametric family,
such as Gaussians or Categorical distributions. The parametric family should be selected in advance, based on a priori
knowledge or empirical data distribution.

The transition model is a Markov chain, which could be viewed as a directed graph. The structure of the graph could
be chosen according to domain expert knowledge. Building these expert thoughts correctly into the model makes it more
reasonable, more robust, and less prone to error.

The next step would be to chose a parametric family for duration distributions by the experts, and building these
information into the model.

A. Structure
In my thesis, I deal with discrete-time, finite-state Hidden Markov Models. The theorems and proofs are designed for

the categorical observation model, but the ideas apply for any other observation model.

Definition 1. (Discrete-time Hidden Markov Model)
Let Zt and Xt discrete-time stochastic processes with t ≥ 1. The pair (Zt,Xt) is a Hidden Markov Model

if:
1) Zt is a Markov process (that cannot be observed directly)
2) P (Xt ∈ B|Zs = zs s ≥ 1, Xs = xs s ̸= t) = P (Xt ∈ B|Zt = zt)

We call an HMM finite-state if there is only finitely many values that Zt could take. We can assume, that Zt ∈
{1, . . . ,M}, where 1, . . . ,M are the possible hidden states. We also assume, that the HMM is time-homogeneous
(p(zt = j|zt−1 = i) and p(xt|zt = i) are independent of t).

So an HMM is a hidden process, a discrete zt ∈ {1, . . . , N} Markov chain in discrete time (t ∈
{1, . . . , T}), and an observation model p(xt|zt). The joint distribution has the form

p(z1:T , x1:T ) = p(z1)
T∏

t=2

p(zt|zt−1)
T∏

t=1

p(xt|zt)

The initial distribution πi = p(z1 = i) is a probability distribution on {1, . . . , N}.
The transition model Aij

.
= p(zt = j|zt−1 = i) is independent of the time t (time-homogeneous). A is

an N × N matrix, also called the transition matrix.
The observation model could represent discrete or continuous distributions. In the discrete case the observation model is

a matrix of B, where Bil = p(xt = l|zt = i) for the l = 1, . . . , L categories and for the i = 1, . . . , N

hidden states. In the continuous case there is usually a parametric family, such as Gaussians: p(xt|zt = i) =

N(xt|µi,Σi), where the conditional distribution has the parameters µi and Σi .
In the next chapters, we will consider HMMs with categorical observation model (x1, . . . , xT ∈

{1, . . . , L}). The HMM has parameters θ = (π,A,B).
The most basic inference tasks are filtering, smoothing, and MAP estimation.
In filtering we want to compute (online) the αt(i) = p(zt = i|x1:t) belief state which could be done by the

forward algorithm. The forward algorithm is a forward DP algorithm.
In smoothing we want to compute (offline) the γt(i) = p(zt = i|x1:T ) given all the data and

this could be done by the forward algorithm and the backward algorithm. In the backward algorithm we compute
βt(j) = p(xt+1:T |zt = j). The backward algorithm is a backward DP, and then γt(j) ∝ αt(j)βt(j)

could be get.
In learning, besides filtering and smoothing, computing the two-slice marginals ξt,t+1(i, j) =

p(zt = i, zt+1 = j|x1:T ) is also essential. This could be done as ξt,t+1(i, j) ∝
αt(i)Aijβt+1(j)p(xt+1|zt+1 = j) from the already computed α, β values.

The MAP (maximum a posteriori) estimation is the computation of

arg max
z1:T

p(x1:T |z1:T )

This could be done with an offline, forward DP also known as Viterbi decoding.

II. EM LEARNING
Learning in HMM means we want to learn the starting probabilities p(z1), the transition probabilities p(zt|zt−1)

and the parameters of the observation model.
Because of the usually unobservable hidden process, we cannot maximize directly the likelihood function, therefore

an iterative approach called Expectation-Maximization is applied.

A. EM learning in general
The idea of EM is the following. We usually want to maximize the log likelihood of the observed data:

l(θ) = log p(x1:T |θ) = log
[ ∑
z1:T

p(x1:T , z1:T |θ)
]

This is hard to optimize, therefore instead we maximize the complete data log likelihood:

lc(θ) = log p(x1:T , z1:T |θ)

This cannot be computed, since zt are unknown. Define the expected complete data log likelihood as the following:

Q(θ; θ
n−1

) = E
[
lc(θ)|x1:T , θ

n−1]
= E

z1:t|x1:t,θ
n−1

[
lc(θ)

]
= E

z1:T ∼p(z1:T |x1:T ,θn−1)

[
lc(θ)

]
Here, the zt are replaced with their expected value conditioned on the data and the previous parameter set.

The idea of the EM is that since we do not know the actual values of zt , starting from an initial guess of parameters,
we can iteratively estimate zt with probabilities from the parameters (and data), then estimate the parameters using the
zt estimates.

The condition is usually on the amount of gain in the Q function or the number of iterations.
The EM algorithm in general finds a local optimum (with certain assumptions) by increasing the observed data

log-likelihood at every EM step. [1], [3]

Algorithm 1: Expectation-Maximization (EM)
algorithm

Input : Observation sequence x1:T ,
initial parameters θ0

Output: Parameters θN

Until condition:
• E step: Compute Q(θ; θn−1) or the expected sufficient

statistics (for parameter update)
• M step:

θn = argmax
θ

Q(θ; θn−1)

Statement 1. EM increases the observed data log likelihood

For the (θn) parameter series from the EM algorithm:

l(θ
n+1

) ≥ l(θ
n
)

Proof. Denote X = x1:T , Z = z1:T . Denote the distribution qn(Z) = p(Z|X, θn). Let D denote the
information divergence, and H the entropy function.

l(θ) = log p(X|θ) = log p(X,Z|θ) − log p(Z|X, θ)

=
∑
Z

q
n
(Z) log p(X,Z|θ) −

∑
Z

q
n
(Z) log p(Z|X, θ)

= Q(θ; θ
n
) −

∑
Z

q
n
(Z) log

[ p(Z|X, θ)

qn(Z)
q
n
(Z)

]
= Q(θ; θ

n
) + D(q

n
(Z)||p(Z|X, θ)) + H(q

n
(Z))

This is true for every θ. Now setting θ = θn :

l(θ
n
) = Q(θ

n
; θ

n
) + D(q

n
(Z)||p(Z|X, θ

n
)) + H(q

n
(Z))

= Q(θ
n
; θ

n
) + H(q

n
(Z))

By differentiating the two equations, we have:

l(θ) − l(θ
n
) = Q(θ; θ

n
) − Q(θ

n
; θ

n
) + D(q

n
(Z)||p(Z|X, θ))

≥ Q(θ; θ
n
) − Q(θ

n
; θ

n
)

Selecting

θ
n+1

= arg max
θ

Q(θ, θ
n
)

shows that l(θn+1) ≥ l(θn).

One of the best practices is to use multiple randomized initializations of the EM algorithm and select the best parameters.

In some cases (e.g. with HMM) both the E-step and M-step have an analytical solution. This could be also true with
different parameter constraints: e.g. with parameter tying, re-parameterization.

B. EM learning for HMMs - Baum-Welch algorithm
Applying the EM algorithm for learning HMM parameters, the complete data log likelihood is simply the log of the

joint:

lc(θ) = log p(z1|θ) +
T∑

t=2

log p(zt|zt−1, θ) +
T∑

t=1

log p(xt|zt, θ)
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The auxiliary Q(θ; θn) function has the following form:

Q(θ; θ
n
) = Ez∼p(z|x,θn)[lc(θ)]

= Ez1∼p(z1|x,θn)[log p(z1|θ)]+

+
T∑

t=2

E(zt−1,zt)∼p((zt−1,zt)|x,θn)[log p(zt|zt−1, θ)]+

+
T∑

t=1

Ezt∼p(zt|x,θn)[log p(xt|zt, θ)]

=
M∑
i=1

log πi · p(z1 = i|x, θ
n
)+

+
T∑

t=2

M∑
i=1

M∑
j=1

log Aij · p(zt−1 = i, zt = j|x, θ
n
)+

+
T∑

t=1

M∑
i=1

L∑
l=1

log BilI(xt = l) · p(zt = i|x, θ
n
)

=
M∑
i=1

log πiγ
n
1 (i) +

T∑
t=2

M∑
i=1

M∑
j=1

log Aijξ
n
t−1,t(i, j)+

+
T∑

t=1

M∑
i=1

L∑
l=1

log BilI(xt = l)γ
n
t (i)

The E step involves the computation of the expected sufficient statistics:
• γn

t (i) = p(zt = i|x1:T , θn)

• ξnt−1,t(i, j) = p(zt−1 = i, zt = j|x1:T , θn)

Conditioning on θn means computing the γ and ξ values on the HMM with parameters θn . As we already see, the γ

and ξ values could be computed with dynamic programming algorithms.
The M step involves constrained optimization: we want to optimize in π, A, B, but we must ensure that:
• π is a probability distribution on {1, . . . ,M}
• ∀i Ai,: is a probability distribution on {1, . . . ,M}
• ∀i Bi,: is a probability distribution on {1, . . . , L}

We could optimize separately in π, Ai: for i = 1, . . . ,M , and Bi,: for i = 1, . . . ,M .

Statement 2. (M step optimization as divergence minimization)
Let ai ≥ 0 for i = 1, . . . ,M . The probability distribution p on {1, . . . ,M}, that maximizes

M∑
i=1

log pi · ai

is pi = ai/a, if a =
∑M

i=1 ai > 0.

Proof. If ai = 0 ∀i, then any p maximizes the term. Note, that the following proof returns correctly that ai =

0 =⇒ pi = 0.
Define the probability distribution â with âi =

ai
a

.

arg max
p

M∑
i=1

log pi · ai = arg max
p

M∑
i=1

log pi · âi

= arg max
p

M∑
i=1

âi log pi −
M∑
i=1

âi log âi

= arg max
p

−D(â||p)

We have −D(â||p) ≤ 0 and equality if and only if p = â.

For the θn+1 updated parameters:

π
n+1

= arg max
π

M∑
i=1

log πiγ
n
1 (k) = γ

n
1

A
n+1
i,:

= arg max
Ai,:

T∑
t=2

M∑
j=1

log Aijξ
n
t−1,t(i, j)

= arg max
Ai,:

M∑
j=1

log Aij
( T∑
t=2

ξ
n
t−1,t(i, j)

)

∝
( T∑
t=2

ξ
n
t−1,t(i, j)

)
j=1,...,M

B
n+1
i,:

= arg max
Bi,:

T∑
t=1

L∑
l=1

log BilI(xt = l)γ
n
t (i)

= arg max
Bi,:

L∑
l=1

log Bil
( T∑
t=1

I(xt = l)γ
n
t (i)

)

∝
( T∑
t=1

I(xt = l)γ
n
t (i)

)
l=1,...,L

The results are quite intuitive:
• π

n+1
i

∝ γ1(i)n

• A
n+1
ij

∝
∑T

t=2 ξnt−1,t(i, j)

• B
n+1
il

∝
∑T

t=1 γn
t (i)I(xt = l)

These are all expected counts on the corresponding events. The EM learning in the HMM framework is called the
Baum-Welch algorithm.

Statement 3. (Zero persistency in EM)
If we initialize the EM algorithm with such θ0 , that has A0

ij = 0, then:

∀n : A
n
ij = 0

.

Proof. It is enough to show that A1
ij = 0.

From the computation of ξ, we know that if A0
ij = 0, then ξ0t−1,t(i, j) = 0 for t = 2, . . . , T .

But A1
ij ∝

∑T
t=2 ξ0t−1,t(i, j) = 0, which shows that A1

ij = 0.

C. Complexity of the Baum-Welch algorithm
One iteration of the Baum-Welch algorithm involves an E-step and an M-step computation for the HMM. Now assume,

that E is the edge number of the θ0 initialized HMM (E ≥ M − 1).
As we already know, the E-step is the computation of γ and ξ values and that takes O(TM2) time or O(TE)

time in a sparse graph.
On the time complexity of the M-step: for the update of π we need O(M) time. For the update of A, we need to

update at M2 or E places, and each takes O(T ) time.
For the B matrix, we have M × L parameters, for each it takes O(T ) time to update. But for each l ∈

{1, . . . , L} we only need to sum over Tl = {t : xt = l}: Bil ∝
∑

t∈Tl
γt(i). So for each

i ∈ {1, . . . ,M}, the complexity is
∑L

l=1 |Tl| = T , because Tl is a partition of the {1, . . . , T} indicies.

So the full time complextiy of an M-step is O(M + TM2 + TM) = O(TM2) or O(M + TE +

TM) = O(TE).
Therefore one iteration of the Baum-Welch takes O(TM2) time or O(TE) time. As we already see, E does

not increase with the Baum-Welch algorithm. So the initial number of edges E strongly affects the time complexity of the
Baum-Welch.

III. GRAPH REPRESENTATION OF DISTRIBUTIONS
The notation p(v|u) for u, v (hidden) states is only the short form of the time independent p(zt = v|zt−1 =

u).
One main setback of HMMs is that in general, each hidden state i has a duration Ti ∼

Geo(pi). The geometric distribution corresponds to the most simple graph: vertices are {r, v1, s}, edges are
{(r, v1), (v1, v1), (v1, s)} with p(v1|r) = 1, p(v1|v1) = p and also p(s|v1) = 1 − p.
The first arrival to the vertex s (starting from r at index 0) signs the transition to another state. One could extend the
graph with p(s|s) = 1 to ensure a stochastic transition matrix and therefore a Markov chain (but this does not alter the
computation). So given this graph, the probability that the first arrival to s is at step d + 1 is

P (inf{k : xk = s} = d + 1) = (1 − p)p
d−1

= Geo(p)(d)

for the (x)k Markov chain starting from x0 = r. The duration d ≥ 1, which refers to the same logic as in graphical
models, if we step into a state, we must spend 1 time-unit there (in discrete time).

The generalization of the previous idea (representing duration distributions with graphs) is possible.

A. Representation graphs
Formalizing the occurred concepts:

Definition 2. (Duration distribution)
Let X : Ω → N+ be random variable. Then T = pX , the distribution of X is a duration distribution.

Examples for duration distributions: geometric distribution, categorical distribution on {1, . . . , D}, negative
binomial distribution. A mixture of duration distributions is also a duration distribution. The Poisson distribution is not
a duration distribution, but if we truncate it to [1,∞) and normalize it (to integrate to 1), we get a duration distribution
(call it Poisson duration distribution).

Definition 3. (Parametric family of duration distributions)
Let Θ be a parameter space. If for every θ ∈ Θ: X(θ) : Ω → N+ , then {T (θ) : θ ∈ Θ} =

{pX(θ) : θ ∈ Θ} is a parametric family of duration distributions.

Examples for parametric family of duration distributions: geometric distributions with parameter p, categorical
distributions on {1, . . . , D} with parameters p1, . . . , pD , negative binomial distributions with parameters N, p,
negative binomial distributions of fixed order N with parameter p, Poisson duration distributions with parameter λ.

One could think of learning the probabilities of self-transitions in the HMM framework as, given the family of
geometric distributions, we should learn p. That is, similar to the observation model, a family is given. So, if the duration
comes from a geometric family, it is fine. But what if we know that the duration comes from another family? Such as
Cat({1, . . . , D})?

It will be shown that some duration distribution families could be represented as graphs, and in the next chapter, it
would be introduced that one could "merge" these graphs to form a "two-layer" HMM with state durations from the desired
family. There are many possible representations, therefore we should measure the "efficiency" of the representation.

Definition 4. (Representation graph)
A G(η) Markov chain is a representation graph if we have r, s nodes that:
1) r is the starting node with probability 1
2) G(η) stays in r only at index 0
3) s is the ending node with probability 1

For a representation graph the following properties hold:
1) r, v1, . . . , vn, s are the nodes
2) r is the starting node with probability 1
3) G(η) stays in r only at index 0
4) s is the ending node with probability 1 (P (inf{k : xk = s} < ∞) = 1)
5) p(r|r) = 0, p(s|r) = 0, p(s|s) = 1

6) ∀i : p(r|vi) = 0

7) ∃i : p(s|vi) > 0

8) E(G) = Efix(G)∪̇Eprob(G), where the probabilites in Efix are fixed 0s or 1s, and the
probabilities in Eprob are fully controlled by η

The indexing starts from 0 for a G(η) sample and the number of steps taken in G(η) (or the duration) for a sample
is d, if the first arrival to s is at d + 1.

Denote the distribution of duration from G(η) generated samples with T [G(η)].
If we denote two representation graphs with G(η1) and G(η2) it means that they have the same structure, only

the probabilities on the non-fixed edges could differ.
Formally, if X0, X1, . . . is the Markov chain G(η) with X0 = r, then:

T [G(η)](d) = P (inf{k : Xk = s} = d + 1)

= P (Xd+1 = s,Xd ̸= s)

= P (Xd+1 = s first time)

= P (Xd+1 = s ft) = PG(η)(Xd+1 = s ft)

The first example of the geometric distribution is a G(p) representation graph with Efix = {(r, v1)} and
Eprob = {(v1, v1), (v1, s)}. As we already observed, T [G(p)] = Geo(p).

Definition 5. (Properties of a representation graph)
Let G(η) be a representation graph. Then:
• ein

.
= |{i : p(vi|r) ̸≡ 0}| the number of incoming edges

• eout
.
= |{i : p(s|vi) ̸≡ 0}| the number of outgoing edges

• e
.
= |{i, j : p(vj |vi) ̸≡ 0}| the number of inner edges

• n
.
= |V (G)| − 2 the number of nodes

• Vinn
.
= {v1, . . . , vn} the set of inner nodes

An edge (u, v) is p(v|u) ̸≡ 0 in this definition, if (u, v) ∈ Efix(G) with probability 1 or if (u, v) ∈
Eprob(G).

The geometric distribution representation graph G(p) has the following edge numbers: ein = 1, eout = 1,
e = 1. The number of nodes is n = 1.

Definition 6. (Graph representation of duration distribution)
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Let T be a duration distribution. Let G(η) be a representation graph. G(η) represents T if T = T [G(η)].

Definition 7. (Graph representation of duration distribution families)
Let T (θ) be a parametric family of duration distributions. Let {G(η) : η ∈ H} be a family of representation

graphs based on the same structure.
G represents T (θ) (the family) if

∀θ ∃η T (θ) = T [G(η)]

∀η ∃θ T [G(η)] = T (θ)

For example, the family of geometric distributions with parameter p could be represented with the same graph structure
as at the beginning of the chapter, only with different η = p values.

The main question is how other distribution families could be represented with graphs.
Example: consider the representation graph G(p) with nodes r, v1, v2, v3, s and with the following non-zero

probabilities:
• p(v1|r) = 1

• p(v1|v1) = p

• p(v2|v1) = 1 − p

• p(v2|v2) = p

• p(v3|v2) = 1 − p

• p(v3|v3) = p

• p(s|v3) = 1 − p

It is not hard to see, that G represents the family of negative binomial distributions of fixed order 3. [3]

Statement 4. (Walk-based description)
Let X0, X1, . . . be the Markov chain of the G(η) representation graph. Let Wd+1 =

{x0, x1, . . . , xd+1 : x0 = r, xd+1 = s, xi ̸= s ∀i ≤ d} denote the set of r → s walks
with length d + 1 (and without s as an inner point). Then:

P (Xd+1 = s ft) =
∑

w∈Wd+1

∏
e∈w

p(e)

Proof. The form of the Markov chain indicates that {Xd ̸= s} = {Xi ̸= s ∀i ≤ d}.

P (Xd+1 = s ft) =
∑

x0,...,xd+1
x0=r,xd+1=s

xd ̸=s

P (X0 = x0, . . . , Xd+1 = xd+1)

=
∑

x0,...,xd+1
x0=r,xd+1=s

xd ̸=s

d+1∏
j=1

p(xj |xj−1)

=
∑

w∈Wd+1

∏
e∈w

p(e)

B. Representation of distribution families
The following duration distribution families have a graph representation: geometric family with parameter p, negative

binomial distributions of fixed order N with parameter p, categorical distributions on {1, . . . , D} with parameters
p1, . . . , pD .

Statement 5. (Representation of geometric family)
The Geo(p) geometric family could be represented by a G(p) graph with nodes r, v1, s and with the following

non-zero probabilities:
• p(v1|r) = 1

• p(v1|v1) = 1 − p

• p(s|v1) = p

Proof. We know that Geo(p)(d) = (1 − p)d−1p for d ≥ 1. Using the definition of T [G(p)]:

T [G(p)](d) = P (inf{k : xk = s} = d + 1)

= P (X0 = r,X1 = v1, . . . , Xd = v1, Xd+1 = s)

= P (X0 = r) · P (X1 = v1|X0 = r) ·
d∏

i=2

P (Xi = v1|Xi−1 = v1)·

· P (Xd+1 = s|Xd = v1)

= 1 · p(v1|r) ·
d∏

i=2

p(v1|v1) · p(s|v1)

= 1 · 1 · (1 − p)
d−1 · p = (1 − p)

d−1
p

There is a clear bijection between Geo(p) instances and G(p) instances; using the same p.

Statement 6. (Representation of negative binomial family of fixed order N )
The NBN (p) negative binomial family could be represented by a G(p) graph with nodes r, v1, . . . , vN , s

and with the following non-zero probabilities:
• p(v1|r) = 1

• p(vi|vi) = 1 − p for i = 1, . . . , N

• p(vi|vi−1) = p for i = 2, . . . , N

• p(s|vN ) = p

Proof. We know that NBN (p)(d) =
(
d−1
N−1

)
(1 − p)d−NpN for d ≥ N .

We prove by induction.
For N = 1, this is the geometric distribution and the previous statement.
For N > 1, assume we know the statement for N − 1. By separating on the first arrival to vN , and using the

induction step:

T [G(p)](d) = P (Xd+1 = s ft)

=
d∑

i=N

P (Xd+1 = s ft, Xi = vN ft)

=
d∑

i=N

P (Xi = vN ft)P (Xd+1 = s ft | Xi = vN ft)

=
d∑

i=N

NBN−1(p)(i − 1)Geo(p)(d − i + 1)

=
d∑

i=N

( i − 2

N − 2

)
(1 − p)

i−N
p
N−1

(1 − p)
d−i

p

= (1 − p)
d−N

p
N

d∑
i=N

( i − 2

N − 2

)

= (1 − p)
d−N

p
N

[(N − 2

N − 2

)
+

d∑
i=N+1

( i − 1

N − 1

)
−

( i − 2

N − 1

)]

= (1 − p)
d−N

p
N

( d − 1

N − 1

)

There is a clear bijection between NBN (p) instances and G(p) instances; using the same p.

Statement 7. (Representation of categorical distributions on {1, . . . , D})
The Cat({1, . . . , D}) categorical family with parameters p1, . . . , pD could be represented by a

G(p1, . . . , pD) graph with nodes r, v1, . . . , vD, s and with the following non-zero probabilities:
• p(v1|r) = 1

• p(vd|v1) = pD+2−d for d = 2, . . . , D

• p(vd|vd−1) = 1 for d = 3, . . . , D

• p(s|vD) = 1

• p(s|v1) = p1

Proof. We know that the Cat({1, . . . , D}) distribution has p1, . . . , pD parameters with
∑D

d=1 pd = 1

and pd ≥ 0. Cat({1, . . . , D})(d) = pd simply.
We will use the walk-based description: P (Xd+1 = s ft) =

∑
w∈Wd+1

∏
e∈w p(e).

For d = 1: W2 = {(r, v1, s)}, therefore P (X2 = s ft) = p(v1|r)p(s|v1) = p1 .
For 2 ≤ d ≤ D: Wd+1 = {(r, v1, vD+2−d, . . . , vD, s)}, therefore

P (Xd+1 = s ft) = p(v1|r) · p(vD+2−d|v1) ·
D−1∏

j=D+2−d

p(vj+1|vj) · p(s|vD)

= pD+2−(D+2−d) = pd

For d > D: Wd+1 = ∅, therefore P (Xd+1 = s ft) = 0.

In the next chapter, we will see two more graph representations for Cat{1, . . . , D}.
It is not hard to see that the mixture distributions could be represented if all the individuals could be represented.

Statement 8. (Representation of mixture distributions)
Let the {Ti(θi) : θi ∈ Θi} family represented by a Gi(ηi) graph for i = 1, 2. Then the family

{ρT1(θ1) + (1 − ρ)T2(θ2) : ρ ∈ [0, 1], θ1 ∈ Θ1, θ2 ∈ Θ2} could be represented by a graph
G(ρ, η1, η2) with nodes r, Vinn(G1), Vinn(G2), s and with the following non-zero probabilities:

• p(v1
i |r) = ρ · pG1(θ1)(v

1
i |r) for v1

i ∈ Vinn(G1)

• p(v2
i |r) = (1 − ρ) · pG2(θ2)(v

2
i |r) for v2

i ∈ Vinn(G2)

• p(v1
j |v1

i ), p(s|v1
i ) as in G1(θ1)

• p(v2
j |v2

i ), p(s|v2
i ) as in G2(θ2)

Proof. It is enough to prove that

T [G(ρ, η1, η2)] = ρT [G1(η1)] + (1 − ρ)T [G2(η2)]

Denote PG(ρ,η1,η2) with P for brevity.

T [G(ρ, η1, η2)] = P (Xd+1 = s ft)

= P (Xd+1 = s ft|X1 ∈ Vinn(G1))P (X1 ∈ Vinn(G1))+

+ P (Xd+1 = s ft|X1 ∈ Vinn(G2))P (X1 ∈ Vinn(G2))

= ρPG1(η1)(Xd+1 = s ft) + (1 − ρ)PG2(η1)(Xd+1 = s ft)

= ρT [G1(η1)] + (1 − ρ)T [G2(η2)]

Although, not every distribution family and not every distribution could be represented.

Statement 9. (Non-representation of light-tailed distributions)
Let T a duration distribution with infinite support and with the following property:

lim sup
d→∞

T (d)

αd
= 0 ∀α > 0

Then there is no finite graph that could represent the distribution T .

Proof. Assume that G(η) represents T .
If G(η) has no positive circle, then it could only represent a finite-support distribution. (Because in this case, the

nodes form a DAG, so a topological order exists, and the maximum length of an rs walk is n(G(η)) + 1.)
Let d0 large enough (d0 > n(G(η)) + 1), and consider the walk-based description:

T (d0) = P (Xd0+1 = s ft) =
∑

w∈Wd0+1

∏
e∈w

p(e)

Select a w ∈ Wd0+1 positive walk; there must be at least one circle in this walk (otherwise it would not have
length d0 ). Select a circle from the walk, and name it C. Denote the walk before C with w0 and the walk after C

with w1 .
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So w = w0Cw1 , and let c = |C| be the length of C (i.e. the number of edges). Use the notation pw =∏
e∈w p(e) for any walk w, then we have:

T (d0) ≥
∏

e∈w

p(e)

=
∏

e∈w0

p(e)
∏

e∈C

p(e)
∏

e∈w1

p(e)

= pw0pCpw1 > 0

Define the following series:
dj = d0 + cj, j = 0, 1, . . .

Then for j ≥ 0; the walk wj = w0Cj+1w1 is a positive, dj -length walk, so:

T (dj) ≥ pw0p
j+1
C

pw1 > 0

Let α < p
1/c
C

, then:

lim sup
d→∞

T (d)

αd
≥ lim sup

j→∞

T (dj)

α
dj

= lim sup
j→∞

T (dj)

αd0+cj

≥ lim
j→∞

pw0
p
j+1
C

pw1

αd0αcj

=
pw0

pCpw1

αd0
lim

j→∞

( pC

αc

)j
= ∞

So the light-tailed property is violated, therefore no such G(η) representation graph exists.

Statement 10. (Non-representation of Poisson duration distributions)
Let T be one member of the Poisson duration distribution family.
Then there is no finite graph that could represent the distribution T .

Proof. We have T (d) = C λd

d!
, so T has infinite-support and T is light-tailed, therefore the previous statement

applies.

IV. GRAPHICAL-DURATION HIDDEN MARKOV MODEL
The GD-HMM is a simple HMM with parameter tyings and reparameterization. The model builds up from a simple

HMM structure and replaces the "nodes" with the desired graph, that represents the duration family.
Consider the (π,A, θo) HMM model with M hidden states, where π is the initial distribution, A is the transition

matrix and θo is the observation parameter matrix. For simplicity, we assume that Aii = 0 for all i.
Let {Ti(θi)} a parametric family of duration distributions, represented with the {Gi(ηi)} family.
For the graph Gi , use the following notations:
• Di = n(Gi) the number of (inner) nodes
• ri = r(Gi) starting node
• si = s(Gi) ending node
• {i1, . . . , iDi

} = Vinn(Gi)

• eiin = ein(Gi) the number of incoming edges

• eiout = eout(Gi) the number of outgoing edges
• ei = e(Gi) the number of inner edges

The Gi(ηi) graph is still a Markov chain on nodes ri, i1, . . . , iDi
, si with transition probabilities

pGi(ηi)
(v|u) for u, v (hidden) states.

Definition 8. (GD-HMM)
Let (π,A, θo) be an HMM model with M hidden states, and Ti is a duration distribution, represented with

Gi(ηi) ∀i = 1, . . . ,M .
The GD-HMM is a (π̃, Ã, θ̃o) HMM model.
For i = 1, . . . ,M :
• hidden states: id ∈ Vinn(Gi) for d = 1, . . . , Di
• transition probabilities

– Ã(ik, il)
.
= pGi(ηi)

(il|ik) for k, l = 1, . . . , Di

– Ã(ik, jl)
.
= pGi(ηi)

(si|ik)AijpGj(ηj)
(jl|rj) for k = 1, . . . , Di for l =

1, . . . , Dj for j ̸= i

• initial distribution π̃(i1) = π(i), π̃(ik) = 0 for k = 2, . . . , Di
• observation model parameters θ̃o(ik) = θo(i) for k = 1, . . . , Di

The parameters of the GD-HMM are (π,A, θo, (η1, . . . , ηM )).

If we want to build a GD-HMM from an HMM with Aii > 0, then in the computation of Ã(ik, jl), we should

work with
Aij

1−Aii
instead of Aij .

Statement 11. (The GD-HMM is an HMM) ∑
v

Ã(ik, v) = 1

Proof.

∑
v

Ã(ik, v) =

Di∑
l=1

Ã(ik, il) +
M∑
j=1
j ̸=i

Dj∑
l=1

Ã(ik, jl)

=

Di∑
l=1

pGi(ηi)
(il|ik) +

M∑
j=1
j ̸=i

Dj∑
l=1

pGi(ηi)
(si|ik)

Aij

1 − Aii

pGj(ηj)
(jl|rj)

= 1 − pGi(ηi)
(si|ik) + pGi(ηi)

(si|ik)
M∑
j=1
j ̸=i

Aij

1 − Aii

Dj∑
l=1

pGj(ηj)
(jl|rj)

= 1

The GD-HMM has two layers of representation: a lower-level representation with id , which forms a Markov chain,
and a higher-level representation with i ↔ {i1, . . . , iDi

}, which corresponds to the original hidden states.

The number of (non-zero) edges in a GD-HMM is:

E =
M∑
i=1

e
i
+

M∑
i=1

M∑
j=1
j ̸=i

e
i
oute

j
in

I(Aij > 0)

The number of (non-zero) edges in a dense GD-HMM (when the original HMM is complete) is:

E =
M∑
i=1

e
i
+

M∑
i=1

M∑
j=1
j ̸=i

e
i
oute

j
in

The number of nodes is V =
∑M

i=1 Di . The number of parameters in a GD-HMM could be upper-bounded by
V (initial distribution) + E (real transitions) + V L (observation parameters).

If we assume that all Di = D are equal, and ei = O(D), eiin = O(1) and eiout = O(1), then the
number of nodes is MD and the number of edges is O(MD + M2), which results in a sparse graph if D ≫ M .

(HMM is a subclass of the GD-HMM)
Let (π,A, θo) be an HMM with M hidden states. Let Ti = Geo(1 − pi), and ∀i = 1, . . . ,M

consider the representation graph Gi(pi) with nodes ri, i1, si and the following non-zero probabilities:
• p(i1|ri) = 1

• p(i1|i1) = pi
• p(si|i1) = 1 − pi

The resulting GD-HMM is a (π, Ã, θo) HMM model on the {1, . . . ,M} nodes with:

Ãij =

{
(1 − pi)Aij/(1 − Aii) if j ̸= i

pi if j = i

This gives back the original HMM if pi = Aii ∀i.

V. LEARNING THE PARAMETERS OF GD-HMM
In the previous section, a new HMM variant was presented, but because of its special properties, we must go through

the Baum-Welch algorithm to see what steps need to be modified.
Assume that the initialization is correct, i.e. we construct the θ0 GD-HMM from a (π0, A0, B0) HMM with

A0
ii = 0 and from the Gi(η

0
i ) graphs as in the definition. The initialized GD-HMM has E =

∑M
i=1 ei +∑M

i=1
∑M

j=1
j ̸=i

eioute
j
in

I(A0
ij > 0) edges. We already see, that E does not increase during the EM.

As the model is still an HMM, the E-step (forwards-backwards algorithm) including every related computation could
be done as before: α, β, γ, ξ. The time complexity is O(TE) as we already see. Also, the Viterbi decoding could be
done as before as well.

However, the M-step must be changed, because, from the definition of GD-HMM: no individual update on Ai,:
probabilities allowed. Here, the reformulation of EM (Baum-Welch) algorithm is presented:

The auxiliary function Q(θ; θn) for a simple HMM on {1, . . . ,M} nodes has the following form:

Q(θ; θ
n
) =

M∑
i=1

log πiγ
n
1 (i) +

T∑
t=2

M∑
i=1

M∑
j=1

log Aijξ
n
t−1,t(i, j)+

+
T∑

t=1

M∑
i=1

L∑
l=1

log BilI(xt = l)γ
n
t (i)

The GD-HMM has nodes {ik : k ∈ {1, . . . , Di}, i ∈ {1, . . . ,M}}:

Q(θ; θ
n
) =

M∑
i=1

Di∑
k=1

log π̃ik
γ
n
1 (ik) +

T∑
t=2

M∑
i=1

Di∑
k=1

M∑
j=1

Dj∑
l=1

log Ãik,jl
ξ
n
t−1,t(ik, jl)+

+
T∑

t=1

M∑
i=1

Di∑
k=1

L∑
l=1

log B̃ik,lI(xt = l)γ
n
t (ik)

We need to rewrite the auxiliary function to a function of (π,A,B, (η1, . . . , ηM )). Use the short notations
pi = pGi(ηi)

, ξ(ik, jl) =
∑T

t=2 ξnt−1,t(ik, jl), Tl = {t : xt = l}. We rewrite the function
term by term:

Initial distribution:

M∑
i=1

Di∑
k=1

log π̃ik
γ
n
1 (ik) =

M∑
i=1

log πiγ
n
1 (i1)

Transition probabilities:

T∑
t=2

M∑
i=1

Di∑
k=1

M∑
j=1

Dj∑
l=1

log Ãik,jl
ξ
n
t−1,t(ik, jl) =

M∑
i=1

Di∑
k=1

Di∑
l=1

log pi(il|ik)ξ(ik, il)+

M∑
i=1

Di∑
k=1

M∑
j=1
j ̸=i

Dj∑
l=1

log(pi(si|ik)Aijpj(jl|rj))ξ(ik, jl) =

M∑
i=1

Di∑
k=1

[ Di∑
l=1

log pi(il|ik)ξ(ik, il) + log pi(si|ik)

( M∑
j=1
j ̸=i

Dj∑
l=1

ξ(ik, jl)

)]
+

M∑
i=1

[ M∑
j=1
j ̸=i

log Aij

( Di∑
k=1

Dj∑
l=1

ξ(ik, jl)

)]
+

M∑
j=1

[ Dj∑
l=1

log pj(jl|rj)
( M∑

i=1
i̸=j

Di∑
k=1

ξ(ik, jl)

)]
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Emission probabilities:

T∑
t=1

M∑
i=1

Di∑
k=1

L∑
l=1

log B̃ik,lI(xt = l)γ
n
t (ik) =

M∑
i=1

[ L∑
l=1

log Bil

( T∑
t=1

Di∑
k=1

I(xt = l)γ
n
t (ik)

)]
=

M∑
i=1

[ L∑
l=1

log Bil

( ∑
t∈Tl

Di∑
k=1

γ
n
t (ik)

)]

We see that an analytical update is possible in the M-step, because the Q function could be written as a sum of∑
i∈I ai log pi terms, where (pi : i ∈ I) is a probability distribution and ai ≥ 0 ∀i ∈ I .

The time-complexity of the M-step is:
• O(M +

∑M
i=1 Di) for the initial distribution

• O(TE) for the transition probabilities (Aij , (η1, . . . , ηM )):

1) O(TE) for computing ξ(ik, jl) =
∑T

t=2 ξnt−1,t(ik, jl) values for {(ik, jl) :

Ã0
ik,jl

> 0}, the others are zeroes

2) O(E) for computing
∑M

j=1
j ̸=i

∑Dj
l=1

ξ(ik, jl) coefficients for all (ik, si) exit edges:

∑M
i=1 eiout

∑
j=1 e

j
in

I(A0
ij > 0) ≤ E, because ξ(ik, jl) > 0 implies that (ik, si)

exit edge, A0
ij > 0 and (rj, jl) entry edge.

3) O(E) for computing
∑Di

k=1

∑Dj
l=1

ξ(ik, jl) coefficients for all {(i, j) : Aij > 0}):
similarly as previous

4) O(E) for computing
∑M

i=1
i̸=j

∑Di
k=1

ξ(ik, jl) coefficients for all (rj, jl) entry edges: similarly

as previous
5) O(E) for updating pi(il|ik) and pi(si|ik) parameters for all ik : for each i, we have ei +

eiout non-zero edges in Gi ,
∑M

i=1 ei + eiout ≤ E

6) O(E) for updating Aij parameters for all i, j:
∑M

i=1
∑M

j=1
j ̸=i

I(Aij > 0) ≤ E

7) O(E) for updating pj(jl|rj) parameters for all jl :
∑M

j=1 e
j
in

≤ E

8) O(E) for assigning every non-zero (ik, jl) edge their new Ãik,jl
=

pi(si|ik)Aijpj(jl|rj) probability and every (ik, il) edge their new
Ãik,il

= pi(il|ik) probability

• O(T (M +
∑M

i=1 Di)) for the emission probabilities (Bil ):

1) O(T
∑M

i=1 Di) for summing up γ values: γt(i)
.
=

∑Di
k=1

γn
t (ik)

2) O(TM) for updating Bil parameters:
∑M

i=1
∑L

l=1 log Bil
∑

t∈Tl
γt(i) as in simple HMM

(for all i: Bil needs |Tl| additions)
3) O(T

∑M
i=1 Di) for assigning the corresponding emission probabilities: B̃ik,l = Bil

In summary, we have, that the M-step could be done in O(TE) time, such as in the simple Baum-Welch algorithm,
and therefore one EM iteration for GD-HMM takes O(TE) time.

VI. EFFICIENCY OF REPRESENTATION IN GD-HMM
As we have already seen, the number of (non-zero) edges is the key measure of the time complexity of the

forwards-backwards algorithm (and EM algorithm) in any HMM.
We advance the usefulness of the number of edges and define efficiency of representation.

Definition 9. (Representation efficiency of GD-HMM)
Let θ = (π,A, θo) is an HMM and let Ti be duration distributions represented with Gi graphs. The full

efficiency of representation is the number of edges in the resulting GD-HMM:

E({Gi}, {Ti}, θ) =
M∑
i=1

e
i
+

M∑
i=1

M∑
j=1
j ̸=i

e
i
oute

j
in

I(Aij > 0)

We would like to measure how efficient is the representation of Ti with Gi , so we should create a simpler definition
of efficiency, that does not depend on the θ HMM. We could examine only the GD-HMMs from HMMs with complete
graphs (∀i ̸= j : Aij > 0).

Definition 10. (Representation efficiency function)
Let θ be an HMM with complete graph. Let Ti be duration distributions represented with Gi graphs. The

efficiency-function of representation is E : N+ → N+ defined by the following:

E({Gi}, {Ti})(M) =
M∑
i=1

e
i
+

M∑
i=1

M∑
j=1
j ̸=i

e
i
oute

j
in

Now we can measure the goodness of representations together. Next, we want to measure the efficiency of individual
representations. The motivation is that each Ti may come from the same family. To succeed next we assume that every
Ti is represented with G(ηi), so the inner structure of the graph is the same.

Definition 11. (Representation efficiency function of graphs)
Let {T (θ) : θ ∈ Θ} is a parametric family of duration distributions. Let G is the representation graph of

{T (θ)}. The efficiency function of representation is the following:

E(G, {T (θ)})(M) = Me(G) + M(M − 1)eout(G)ein(G)

which is simply the narrowing of the previous definition to the case of G represents all Ti .

Remember, that the geometric distribution representation graph G(p) has the following edge numbers: ein = 1,
eout = 1, e = 1. Therefore the efficiency-function is E(G(p), Geo(p))(M) = M+M(M−1) = M2

which is the number of edges in a complete HMM.
From the previous definition, it is clear that we want more efficient representations for duration distribution families;

i.e. representation with fewer edges.
For example consider the family of categorical distributions on {1, . . . , D} with parameters p1, . . . , pD .

Here is the construction of three different graphs G1, G2, G3 each of them represents the family, but with different
efficiency.

Let G1 has D + 2 nodes and has the following non-zero probability transitions:
• p(vd|r) = pD+1−d for d = 1, . . . , D

• p(vd|vd−1) = 1 for d = 2, . . . , D

• p(s|vD) = 1

The efficiency is M(D − 1) + M(M − 1)D. This representation comes from Yu & Kobayashi [6].
Let G2 has D + 2 nodes and has the following non-zero probability transitions:
• p(v1|r) = 1

• p(vd|v1) = pD+2−d for d = 2, . . . , D

• p(vd|vd−1) = 1 for d = 3, . . . , D

• p(s|vD) = 1

• p(s|v1) = p1
The efficiency is M(2D − 3) + M(M − 1)2. This is more efficient than G1 as long as M ≥ 2 and

D ≥ 2. This representation was presented in the statement of categorical representation.
Let G3 has 2 + 1 + 2 + . . . + D = D(D − 1)/2 + 2 nodes (endowed with double index) and has the

following non-zero probability transitions:
• p(vd,1|r) = pd for d = 1, . . . , D

• p(vd,k|vd,k−1) = 1 for k = 2, . . . d for d = 1, . . . , D

• p(s|vd,d) = 1 for d = 1, . . . , D

The efficiency is M(D − 1)(D − 2)/2 + M(M − 1)D2 . This is the worst among the three.
The following statements tell us, that the second representation is optimal.

Statement 12. (Optimal representation of categorical distributions)
Let {T (θ) : θ ∈ Θ} is the family of categorical distributions on {1, . . . , D}, with θ = (p1, . . . , pD).

Let G represents this family. Then

E(G, {T (θ)})(M) ≥ M(D − 1) + M(M − 1)

Proof. Reminder for the walk-based description:

P (Xd+1 = s ft) =
∑

w∈Wd+1

∏
e∈w

p(e)

.
Let pD > 0 and let G(η) represent T (p1, . . . , pD). Then:

0 < pD = PG(η)(XD+1 = s ft) =
∑

w∈WD+1

∏
e∈w

pη(e)

Note: p(e) only depends on η, because G is fixed. So we have at least one D + 1-length w =

(r, x1, . . . , xD, s) r → s walk with positive probability.
The x1, . . . , xD nodes are all inner nodes.
I claim they are all different. Assume, that ∃i < j : xi = xj . In this case, C = xi · · · xj is a positive circle.

Denote the walk before C with w0 , and the walk after C with w1 . Let c = |C| ≥ 1 the length of the circle. Then
∀j ≥ 1: wj = w0Cj+1w1 is a positive walk with length D +1+ jc. So T [G(η)](D + jc) > 0 ∀j,
but T (p1, . . . , pD)(D + jc) = 0. Because G(η) represents T , all nodes have to be different.

We have D different inner nodes: x1, . . . , xD . Using the positive walk w = (r, x1, . . . , xD, s):
ein ≥ 1, eout ≥ 1 and e ≥ D − 1. We have:

E(G, {T (θ)})(M) = Me(G) + M(M − 1)eout(G)ein(G) ≥ M(D − 1) + M(M − 1)

Thus, the second representation has efficiency O(MD+M2) and the optimal efficiency is also O(MD+M2).
The time complexity of forwards-backwards algorithm (and one iteration of EM) is O(TE) in a sparse graph. Now
E = MD+M2 ≪ (MD)2 . This leads to an O(T (MD+M2)) complexity using the efficient representation
for categorical family. No better time complexity could be achieved with a different representation and this complexity is
the same as in [2], [6].
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