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Hidden Markov Models

A Hidden Markov Model is a hidden process, a discrete zt ∈ {1, . . . ,N}
Markov chain in discrete time (t ∈ {1, . . . ,T}), and an observation model
p(xt |zt). The joint distribution has the form

p(z1:T , x1:T ) = p(z1)
T∏
t=2

p(zt |zt−1)
T∏
t=1

p(xt |zt)

An HMM (with categorical observations) has parameters θ = (π,A,B).

πi = p(z1 = i) initial distribution

Aij = p(zt = j |zt−1 = i) transition probabilities

Bil = p(xt = l |zt = i) emission probabilities
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Hidden Markov Models

Given an HMM θ = (π,A,B) and observation sequence x1:T .
Inference and learning (E-step):

αt(i) = p(zt = i |x1:t) (forwards alg.)
βt(j) = p(xt+1:T |zt = j) (backwards alg.)

γt(i) = p(zt = i |x1:T ) ∝ αt(i)βt(i)

ξt,t+1(i , j) = p(zt = i , zt+1 = j |x1:T ) ∝ αt(i)Aijβt+1(j)Bj ,xt+1

Time complexity (altogether):

O(TM2)

O(TE ) in a sparse graph with E ≪ M2
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EM learning

Expectation-Maximization algorithm increases the likelihood and finds a
local optima when exact maximum likelihood estimation is not possible.
Complete data log likelihood:

lc(θ) = log p(x1:T , z1:T |θ)

Auxiliary function:

Q(θ; θn−1) = Ez1:T∼p(z1:T |x1:T ,θn−1)

[
lc(θ)

]
EM (using initial parameters θ0):

1 E-step: compute Q(θ; θn−1)

2 M-step:
θn = argmax

θ
Q(θ; θn−1)
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EM learning

EM in HMM (Baum-Welch):

1 E-step - compute γt and ξt,t+1 values in the θn−1 HMM
2 M-step - update parameters:

πn
i ∝ γ1(i)

An
ij ∝

∑T
t=2 ξt−1,t(i , j)

Bn
il ∝

∑T
t=1 γt(i)I(xt = l)

Time complexity of Baum-Welch:

O(TM2)

O(TE ) in a sparse graph with E ≪ M2
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Graph representation of distributions

Representing duration distributions with graphs: the distribution of the
first arrival to the ending (absorption) state in the graph (Markov chain).

The geometric family Geo(p) has the following representation:

Nodes: r , v1, s

Edges:

p(v1|r) = 1
p(v1|v1) = 1− p
p(s|v1) = p
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Graph representation of distributions

Representative families:

geometric family with parameter p

negative binomial family of fixed order N with parameter p

categorical family on {1, . . . ,D}
mixture of representative families

Non-representative distributions:

light-tailed distributions (including truncated Poisson distribution)

(All proved.)
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Graphical-Duration Hidden Markov Model

HSMMs have counter states representing the residential process in each
state and a maximum duration parameter D. Time complexity of
forwards-backwards (E-step) O((M2 +MD)T ) (most efficient
implementation).

HSMMs in general consider only categorical distributions on {1, . . . ,D}.

GD-HMM extends the concept to other families while maintaining the
efficiency to the categorical case. With representation graphs, we could
give a lower bound on the time complexity.
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Graphical-Duration Hidden Markov Model

Let (π,A, θo) be an HMM model with M hidden states, and Ti is a
duration distribution, represented with Gi (ηi ) ∀i = 1, . . . ,M.
The GD-HMM is a (π̃, Ã, θ̃o) HMM model.
For i = 1, . . . ,M:

hidden states: id ∈ Vinn(Gi ) for d = 1, . . . ,Di

transition probabilities

Ã(ik , il)
.
= pGi (ηi )(il |ik) for k , l = 1, . . . ,Di

Ã(ik , jl)
.
= pGi (ηi )(si |ik)AijpGj (ηj )(jl |rj) for k = 1, . . . ,Di for

l = 1, . . . ,Dj for j ̸= i

initial distribution π̃(i1) = π(i), π̃(ik) = 0 for k = 2, . . . ,Di

observation model parameters θ̃o(ik) = θo(i) for k = 1, . . . ,Di

The parameters of the GD-HMM are (π,A, θo , (η1, . . . , ηM)).
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Graphical-Duration Hidden Markov Model

Two levels of representation:

lower level representation: id , Markov-chain

higher level representation: i ↔ {i1, . . . , iDi
}, original hidden states

The number of (non-zero) edges in a GD-HMM is:

E =
M∑
i=1

e i +
M∑
i=1

M∑
j=1
j ̸=i

e ioute
j
inI(Aij > 0)

e iin = ein(Gi ) the number of incoming edges

e iout = eout(Gi ) the number of outgoing edges

e i = e(Gi ) the number of inner edges
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Learning the parameters of GD-HMM

Baum-Welch E-step applicable.

Baum-Welch M-step (complex modification):

write Q(θ; θn) as a function of parameters (π̃, Ã, θ̃o)

rewrite it as a function of parameters (π,A, θo , (η1, . . . , ηM)) using
the definition GD-HMM

group the terms to have a sum of
∑

i∈I ai log pi terms, where
(pi : i ∈ I ) is a probability distribution and ai ≥ 0 ∀i ∈ I

compute ai coefficients

Time complexity remains O(TE ).
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Efficiency of representation in GD-HMM

The number of (non-zero) edges is the key measure of the time complexity
of the forwards-backwards algorithm (and EM algorithm) in any HMM.

We have an efficient representation if the final graph uses less edges
(complete original HMM, same distribution family, same representation
graph):

E (G , {T (θ)})(M) = Me(G ) +M(M − 1)eout(G )ein(G )

where

M is the number of hidden states

ein
.
= |{i : p(vi |r) ̸≡ 0}| the number of incoming edges

eout
.
= |{i : p(s|vi ) ̸≡ 0}| the number of outgoing edges

e
.
= |{i , j : p(vj |vi ) ̸≡ 0}| the number of inner edges
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Efficiency of representation in GD-HMM

Álĺıtás

(Optimal representation of categorical distributions)
Let {T (θ) : θ ∈ Θ} is the family of categorical distributions on {1, . . . ,D},
with θ = (p1, . . . , pD). Let G represents this family. Then

E (G , {T (θ)})(M) ≥ M(D − 1) +M(M − 1)

For the categorical distribution, a representation graph G has
E = M(2D − 3) +M(M − 1)2 = O(MD +M2) edges.

The time complexity (of 1 iteration of EM) with this graph is
O(T (MD +M2)) (same as the most efficient implementation of
HSMM)

No better time complexity could be achieved with representation
graphs.
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