Graphical-Duration HMM

László Keresztes

Applied Mathematics MSc, ELTE-TTK
Supervisor: Balázs Csanád Csáji, SZTAKI, ELTE

May 18, 2022

Hidden Markov Models

A Hidden Markov Model is a hidden process, a discrete $z_{t} \in\{1, \ldots, N\}$ Markov chain in discrete time $(t \in\{1, \ldots, T\})$, and an observation model $p\left(x_{t} \mid z_{t}\right)$. The joint distribution has the form

$$
p\left(z_{1: T}, x_{1: T}\right)=p\left(z_{1}\right) \prod_{t=2}^{T} p\left(z_{t} \mid z_{t-1}\right) \prod_{t=1}^{T} p\left(x_{t} \mid z_{t}\right)
$$

An HMM (with categorical observations) has parameters $\theta=(\pi, A, B)$.

- $\pi_{i}=p\left(z_{1}=i\right)$ initial distribution
- $A_{i j}=p\left(z_{t}=j \mid z_{t-1}=i\right)$ transition probabilities
- $B_{i l}=p\left(x_{t}=I \mid z_{t}=i\right)$ emission probabilities

Hidden Markov Models

Given an HMM $\theta=(\pi, A, B)$ and observation sequence $x_{1: T}$. Inference and learning (E -step):

- $\alpha_{t}(i)=p\left(z_{t}=i \mid x_{1: t}\right)$ (forwards alg.)
- $\beta_{t}(j)=p\left(x_{t+1: T} \mid z_{t}=j\right)$ (backwards alg.)
- $\gamma_{t}(i)=p\left(z_{t}=i \mid x_{1: T}\right) \propto \alpha_{t}(i) \beta_{t}(i)$
- $\xi_{t, t+1}(i, j)=p\left(z_{t}=i, z_{t+1}=j \mid x_{1: T}\right) \propto \alpha_{t}(i) A_{i j} \beta_{t+1}(j) B_{j, x_{t+1}}$

Time complexity (altogether):

- $\mathcal{O}\left(T M^{2}\right)$
- $\mathcal{O}(T E)$ in a sparse graph with $E \ll M^{2}$

EM learning

Expectation-Maximization algorithm increases the likelihood and finds a local optima when exact maximum likelihood estimation is not possible. Complete data log likelihood:

$$
I_{c}(\theta)=\log p\left(x_{1: T}, z_{1: T} \mid \theta\right)
$$

Auxiliary function:

$$
Q\left(\theta ; \theta^{n-1}\right)=E_{z_{1: T} \sim p\left(z_{1: T} \mid x_{1: T}, \theta^{n-1}\right)}\left[I_{c}(\theta)\right]
$$

EM (using initial parameters θ^{0}):
(1) E-step: compute $Q\left(\theta ; \theta^{n-1}\right)$
(2) M-step:

$$
\theta^{n}=\underset{\theta}{\arg \max } Q\left(\theta ; \theta^{n-1}\right)
$$

EM learning

EM in HMM (Baum-Welch):
(1) E-step - compute γ_{t} and $\xi_{t, t+1}$ values in the $\theta^{n-1} \mathrm{HMM}$
(2) M-step - update parameters:

- $\pi_{i}^{n} \propto \gamma_{1}(i)$
- $A_{i j}^{n} \propto \sum_{t=2}^{T} \xi_{t-1, t}(i, j)$
- $B_{i l}^{n} \propto \sum_{t=1}^{T} \gamma_{t}(i) \mathbb{I}\left(x_{t}=l\right)$

Time complexity of Baum-Welch:

- $\mathcal{O}\left(T M^{2}\right)$
- $\mathcal{O}(T E)$ in a sparse graph with $E \ll M^{2}$

Graph representation of distributions

Representing duration distributions with graphs: the distribution of the first arrival to the ending (absorption) state in the graph (Markov chain).

The geometric family $\operatorname{Geo}(p)$ has the following representation:

- Nodes: r, v_{1}, s
- Edges:
- $p\left(v_{1} \mid r\right)=1$
- $p\left(v_{1} \mid v_{1}\right)=1-p$
- $p\left(s \mid v_{1}\right)=p$

Graph representation of distributions

Representative families:

- geometric family with parameter p
- negative binomial family of fixed order N with parameter p
- categorical family on $\{1, \ldots, D\}$
- mixture of representative families

Non-representative distributions:

- light-tailed distributions (including truncated Poisson distribution) (All proved.)

Graphical-Duration Hidden Markov Model

HSMMs have counter states representing the residential process in each state and a maximum duration parameter D. Time complexity of forwards-backwards (E-step) $\mathcal{O}\left(\left(M^{2}+M D\right) T\right)$ (most efficient implementation).

HSMMs in general consider only categorical distributions on $\{1, \ldots, D\}$.
GD-HMM extends the concept to other families while maintaining the efficiency to the categorical case. With representation graphs, we could give a lower bound on the time complexity.

Graphical-Duration Hidden Markov Model

Let $\left(\pi, A, \theta_{0}\right)$ be an HMM model with M hidden states, and T_{i} is a duration distribution, represented with $G_{i}\left(\eta_{i}\right) \forall i=1, \ldots, M$.
The GD-HMM is a $\left(\tilde{\pi}, \tilde{A}, \tilde{\theta}_{0}\right)$ HMM model.
For $i=1, \ldots, M$:

- hidden states: $i_{d} \in V_{i n n}\left(G_{i}\right)$ for $d=1, \ldots, D_{i}$
- transition probabilities

$$
\begin{aligned}
& \text { - } \tilde{A}\left(i_{k}, i_{l}\right) \doteq p_{G_{i}\left(\eta_{i}\right)}\left(i_{l} \mid i_{k}\right) \text { for } k, I=1, \ldots, D_{i} \\
& \text { - } \tilde{A}\left(i_{k}, j_{l}\right) \doteq p_{G_{i}\left(\eta_{i}\right)}\left(s_{i} \mid i_{k}\right) A_{i j} p_{G_{j}\left(\eta_{j}\right)}\left(j_{i} \mid r_{j}\right) \text { for } k=1, \ldots, D_{i} \text { for } \\
& I=1, \ldots, D_{j} \text { for } j \neq i
\end{aligned}
$$

- initial distribution $\tilde{\pi}\left(i_{1}\right)=\pi(i), \tilde{\pi}\left(i_{k}\right)=0$ for $k=2, \ldots, D_{i}$
- observation model parameters $\tilde{\theta}_{o}\left(i_{k}\right)=\theta_{o}(i)$ for $k=1, \ldots, D_{i}$

The parameters of the GD-HMM are $\left(\pi, A, \theta_{0},\left(\eta_{1}, \ldots, \eta_{M}\right)\right)$.

Graphical-Duration Hidden Markov Model

Two levels of representation:

- lower level representation: i_{d}, Markov-chain
- higher level representation: $i \leftrightarrow\left\{i_{1}, \ldots, i_{D_{i}}\right\}$, original hidden states

The number of (non-zero) edges in a GD-HMM is:

$$
E=\sum_{i=1}^{M} e^{i}+\sum_{\substack{i=1}}^{M} \sum_{\substack{j=1 \\ j \neq i}}^{M} e_{\text {out }}^{i} e_{i n}^{j} \mathbb{I}\left(A_{i j}>0\right)
$$

- $e_{i n}^{i}=e_{i n}\left(G_{i}\right)$ the number of incoming edges
- $e_{\text {out }}^{i}=e_{\text {out }}\left(G_{i}\right)$ the number of outgoing edges
- $e^{i}=e\left(G_{i}\right)$ the number of inner edges

Learning the parameters of GD-HMM

Baum-Welch E-step applicable.
Baum-Welch M-step (complex modification):

- write $Q\left(\theta ; \theta^{n}\right)$ as a function of parameters $\left(\tilde{\pi}, \tilde{A}, \tilde{\theta}_{o}\right)$
- rewrite it as a function of parameters $\left(\pi, A, \theta_{0},\left(\eta_{1}, \ldots, \eta_{M}\right)\right)$ using the definition GD-HMM
- group the terms to have a sum of $\sum_{i \in I} a_{i} \log p_{i}$ terms, where $\left(p_{i}: i \in I\right)$ is a probability distribution and $a_{i} \geq 0 \forall i \in I$
- compute a_{i} coefficients

Time complexity remains $\mathcal{O}(T E)$.

Efficiency of representation in GD-HMM

The number of (non-zero) edges is the key measure of the time complexity of the forwards-backwards algorithm (and EM algorithm) in any HMM.

We have an efficient representation if the final graph uses less edges (complete original HMM, same distribution family, same representation graph):

$$
E(G,\{T(\theta)\})(M)=M e(G)+M(M-1) e_{\text {out }}(G) e_{i n}(G)
$$

where

- M is the number of hidden states
- $e_{i n} \doteq\left|\left\{i: p\left(v_{i} \mid r\right) \not \equiv 0\right\}\right|$ the number of incoming edges
- $e_{\text {out }} \doteq\left|\left\{i: p\left(s \mid v_{i}\right) \not \equiv 0\right\}\right|$ the number of outgoing edges
- $e \doteq\left|\left\{i, j: p\left(v_{j} \mid v_{i}\right) \not \equiv 0\right\}\right|$ the number of inner edges

Efficiency of representation in GD-HMM

Állítás

(Optimal representation of categorical distributions)
Let $\{T(\theta): \theta \in \Theta\}$ is the family of categorical distributions on $\{1, \ldots, D\}$, with $\theta=\left(p_{1}, \ldots, p_{D}\right)$. Let G represents this family. Then

$$
E(G,\{T(\theta)\})(M) \geq M(D-1)+M(M-1)
$$

- For the categorical distribution, a representation graph G has $E=M(2 D-3)+M(M-1) 2=\mathcal{O}\left(M D+M^{2}\right)$ edges.
- The time complexity (of 1 iteration of EM) with this graph is $\mathcal{O}\left(T\left(M D+M^{2}\right)\right.$) (same as the most efficient implementation of HSMM)
- No better time complexity could be achieved with representation graphs.

