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1 Introduction

In 2020, Yang and Wang proposed the following model to investigate the epidemic period of
COVID-19 in Wuhan from January 23, 2020 to February 10, 2020[1]:

dS

dt
= Λ− βESE − βISI − βV SV − µS

dE

dt
= βESE + βISI + βV SV − (α+ µ)E

dI

dt
= αE − (w + γ + µ)I

dR

dt
= γI − µR

dV

dt
= ξ1E + ξ2I − σV

(1)

Parameters
Λ Population influx
µ Natural death rate
w Disease induced death rate
1/α Mean incubation period
γ Recovery rate
βI Transmission rate by infected individual
βE Transmission rate by exposed individual
βV Transmission rate by the environmental reservoir
ξ1 Rate of the exposed individuals contributing

the virus to the environment
ξ2 Rate of the infected individuals contributing

the virus to the environment
σ Rate of (natural and artificial) removal of the virus

from the environment

where S, E, I, R are the number of susceptible, exposed (infectious but not yet symptomatic),
infected (infectious and symptomatic) and recovered, respectively. All the parameters are non-
negative. The core of the model is the usual SEIR model with variables (S,E,I,R), the main
changes are the mass-action incidence βV SV in the compartment S and E and the new compart-
ment V with its own dynamics. V represents the environmental reservoir and is integrated to the
usual SEIR model to include the possibility that a susceptible individual may acquire the disease
through the environment and not directly by susceptible-infectious contacts. Many cholera models
also have similar explicit environmental compartments[2].

We are mainly interested in the numerical modeling aspect of this model (i.e. which prop-
erties of the model are inherited after different discretizations). The discretization of the different
continuous epidemiological models are inevitable if we want to solve them numerically. One of the
simplest one-step numerical method is the explicit Euler method: xn+1 = xn + hf(tn, xn), where
h > 0 is the (time) discretization step-size. By discretizing (1) by the explicit Euler method, we
get the following (discrete) system:

sn+1 = sn + h(Λ− βEsnen − βIsnin − βV snvn − µsn)

en+1 = en + h(βEsnen + βIsnin + βV snvn − (α+ µ)en)

in+1 = in + h(αen − (w + γ + µ)in)

rn+1 = rn + h(λin − µrn)

vn+1 = vn + h(ξ1en + ξ2in − σvn)

(2)

where the lower case variables s, e, i, r, v have the same meaning as their uppercase equivalents.
s0, e0, i0, r0, v0 are given (s0 = S(0), etc.) and non-negative.

2 Property preservation of the discrete model

We can look at system (2) as a discrete autonomous system and we can ask similar questions as
in the continuous case (1). For a discrete (autonomus) dynamical system xn+1 = f(xn), we call
x∗ an equlibrium point if x∗ = f(x∗) (i.e. constant solution). It can be shown that x∗ ∈ R5 is an
equlibrium point of system (1) if and only if it is an equlibrium point of (2), more then that, it
is true for the explicit (and implicit) Euler discretization method independently of the considered
system, because if we have a continuous system ẋ = f(x) with x∗ such that f(x∗) = 0, then
after the discretization we get the discrete system xn+1 = xn + hf(xn) (for the implicit method
xn+1 = xn + hf(xn+1)) with equilibrium points x∗ = x∗ + f(x∗). Note that this is not true in
general for one-step numerical methods, so-called spurious equilibrium points can appear which of
them are not equilibrium points of the continuous system and their values depends on h and for
h → 0 their limits are the real equilibrium points[3].
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The two equilibria of the system (2) are E0 = (S0, 0, 0, 0, 0)
T where S0 := Λ

µ and E1 = (s∗, e∗, i∗, r∗, v∗)T ,
where

s∗ =
α+ µ

βE + α
w1

βI + cβv

e∗ =
Λ

α+ µ
− µ

βE + α
w1

βI + cβV

i∗ =
Λα

w1(α+ µ)
− αµ

w1(βE + α
w1

βI + cβv)

r∗ =
γαΛ

µw1(α+ µ)
− γα

w1(βE + α
w1

βI + cβV )

v∗ =
Λc

α+ µ
− cµ

βE + α
w1

βI + cβv

and w1 = γ+µ+w, c = ξ1w1+ξ2α
w1σ

. Note that s∗ is always positive, whereas e∗, i∗, r∗, v∗ are positive
if and only if R0 > 1, where R0 is the basic reproduction number:

R0 =
βES0

α+ µ
+

βIS0α

(α+ µ)(w + γ + µ)
+

βV S0(αξ2 + (w + γ + µ)ξ1)

(α+ µ)(w + γ + µ)σ
.

the number of secondary infections produced by an infected individual in a fully susceptible pop-
ulation (threshold parameter for the invasion of a disease organism into the population)[4]. While
for the continuous system (1)

Ω =

{
(S,E, I,R, V ) ∈ R5

+ : S + E + I +R ≤ Λ

µ
, 0 ≤ V ≤ (ξ1 + ξ2)Λ

µσ

}
(3)

is positively invariant region[1]. For the discrete system (2) we have the following theorem about
the non-negativity and the boundedness:

Theorem 1. The discretized system (2) is positively invariant in Ω if h ≤ min{ 1
µ+(βe+βi+βv)s0

, 1
α+µ ,

1
w+γ+µ}

and h < 1
σ .

Proof. Let nn denote the total population at time n: nn = sn + en + in + rn. Suppose that
(sn−1, en−1, in−1, rn−1, vn−1) ∈ Ω, then by adding the first four equations of system (2):

nn = nn−1 + h(Λ− µnn−1 − λin) ≤ nn−1(1− µh) + Λh

By recursively using the inequality

nn ≤ nn−1(1− µh) + Λh ≤ nn−2(1− µh)2 + hΛ(1− µh) + hΛ ≤ ...

≤ n0(1− µh)n + hΛ

n−1∑
k=0

(1− µh)k =
Λ

µ
+ (n0 −

Λ

µ
)(1− µh)n (4)

From where we can see that if h < 1
µ , then n0 ∈ [0, λ

µ ] =⇒ nn ∈ [0, Λ
µ ] for alln ∈ N. Similarly

vn = (1− hσ)vn−1 + h(xi1en−1 + ξ2in−1) ≤ (1− hσ)vn−1 + h(ξ1 + ξ2)
Λ

µ
≤

≤
(
v0 −

ξ1 + ξ2
σ

Λ

µ

)
(1− hσ)n +

ξ1 + ξ2
σ

Λ

µ
(5)

From where we get that if h < 1
σ then v0 ∈ [0, ξ1+ξ2

σ
Λ
µ ] =⇒ nn ∈ [0, ξ1+ξ2

σ
Λ
µ ] for alln ∈ N. To get

conditions on the positivity for each variable we use the same logic as in [5]. For the first variable,
we want to show that sn ∈ [0, λ

µ ]. From the first equation of (2):

sn = sn−1 + h(Λ− βEsn−1en−1 − βIsn−1in−1 − βV sn−1vn−1 − µsn−1)
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The inequality holds if and only if

sn−1 ≥ −h(Λ− βEsn−1en−1 − βIsn−1in−1 − βV sn−1vn−1 − µsn−1). (6)

If
−(Λ− βEsn−1en−1 − βIsn−1in−1 − βV sn−1vn−1 − µsn−1) ≤ 0

than the inequality (6) holds for any step size. If

−h(Λ− βEsn−1en−1 − βIsn−1in−1 − βV sn−1vn−1 − µsn−1) > 0

then we have to show that

h <
sn−1

−Λ + βEsn−1en−1 + βIsn−1in−1 + βV sn−1vn−1 + µsn−1
(7)

for some h. From the inequality:

1

µ+ (βe + βi + βv)S0
=

sn−1

sn−1µ+ (βe + βi + βv)S0sn−1

≤ sn−1

−Λ + βEsn−1en−1 + βIsn−1in−1 + βV sn−1vn−1 + µsn−1
(8)

So for any h ≤ 1
µ+(βe+βi+βv)S0

the inequality (6) holds, i.e. sn ≥ 0.

For en, in, rn, vn the proof can be carried out similarly, but one gets simpler sufficient conditions
for h because of the sign of the terms.

Note that (8) is sufficient but not necessary condition, the non-negativity of (for example)
sn+1 is fully determined by the condition (7). However, our numerical experiment shows that
there are some necessary conditions for the non-negativity of the variables. This can be seen in
fig: 1, where we used the same parameters and initial values as in [1] with h = 2. In this case
h > 1

µ+(βe+βi+βv)s0
, 1

α+σ < h and 1
w+α+µ < h but 1

σ > h. We can see that non-negativity does

not hold for the variables e, i, v. We also see that (rapid) oscillations arises, just as in the case of
the Dahlquist test equation for some h when we use the explicit Euler discretization scheme. Also
note that from the inequality (7) and there equivalents for the other variables we can construct an
adaptive explicit Euler method with variable step-size for which the non-negativity is preserved.

Figure 1: Negativity of the Explicit Euler method when h = 2. The lower figure is the same as the
upper one, but the variable V is not shown, and it is also zoomed in.
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For the continuous model (1) it was shown that in the case of R0 < 1, the boundary equilibrium
is globally asymptotically stable on Ω and the endemic equilibrium is unstable, while in the case
R0 > 1 the stability of the two equilibria changes[1]. In order to obtain some conditions for the
stability of (2) at E0 one can linearize the system at E0. The characteristic polynomial of the
Jacobian at E0 is:

F ∗(λ) = (1− hµ− λ)2F (λ) = (1− hµ− λ)2(λ3 + b1λ
2 + b2λ+ b3)

where
b1 = −3− hs1

b2 = 3 + 2hs1 + h2s2

b3 = −1− hs1 − h2s2 + h3s3

and s1, s2, s3 are some functions of our parameters. Note that s3 is always positive. The linearized
system is asymptotically stable at the boundary equilibrium if all the eigenvalues of the Jacobian
lie inside the unit disk. For this, we must have h < 1

µ , while for F (λ), the Schur-Cohn criterium[6]
gives necessary and sufficient conditions which are the following:

(i.) F (1) > 0

(ii.) −F (−1) > 0

(iii.) |1− b23| > |b2 − b1b3|

(i.) holds if and only if R0 < 1, while (ii.) gives a cubic polynomial inequality: p(h) =
h3 − 2h2 s2

s3
− 4h s1

s3
− 5

s3
< 0. p(0) is always negative because s3 is always positive, so we can

state that there exists an interval (0, h∗), where (ii.) holds. For (iii.) the left hand-side is a sixth-
order polynomial, while the right hand-side is a fourth-order polynomial with variable h. This
does not hold unconditionally for any (0, h∗∗) interval in the sense that there exists s1, s2 ∈ R and
s3 > 0 (without thinking about how possible is to get that s1, s2, s3) such that the inequality does
not hold, but I was not able to give conditions for which (iii.) holds.

Another possibility for obtaining sufficient conditions for the stability of an equilibrium is
by Gershgorin’s disks. At the endemic equilibrium E1, the Jacobian J(E1) is

1− h(βee
∗ + βii

∗ + βvv
∗ + µ) −hβes

∗ −hβis
∗ 0 −hβvs

∗

h(βee
∗ + βii

∗ + βvv
∗) 1 + (hβes

∗ − (α+ µ)) hβis
∗ 0 hβvs

∗

0 hα 1− h(w + γ + µ) 0 0
0 0 hγ 1− hµ 0
0 hξ1 hξ2 0 1− hσ


(9)

We can see that 1− hµ is an eigenvalue, so we must have h < 2
µ . R0 > 1 is a necessary condition

for the asymptotic stability, because if R0 < 1, then one of the eigenvalues of the matrix must lie

on the R > 1 half plane (because at the equilibria ∂xn+1

∂xn
= I + h∂f(x)

∂x holds between the Jacobian
of the continuous and the discrete system). We can give sufficient conditions on the stability by
Gershgorin disks. Let A be a real quadratic matrix, then to have all of its eigenvalues in the unit
disk, we must have aii − Ri(A) > −1 and aii + Ri(A) < 1 for all of its rows, where Ri(A) is the
i-th deleted absolute row sum of A. All of the diagonal elements of J(E1) are smaller than 1, and
it has a special structure such that the first condition depends on h, while the second condition is
independent of h. With some tedious calculations it can be shown that if

h < min

{
2

ξ1 + ξ2 + σ
,

2

α+ w + γ + µ
,
2

µ
,

2

α+ R0µ+ Λ(βe+βi+βv)
µR0

}

and α < w + γ + µ, ξ1 + ξ2 < σ, (βe − βi)
Λ

µR0
< α + µR0 and Λ(βe + βi + βv) < R2

0µ
2 then

the discrete system (2) is (locally) asymptotically stable at the endemic equilibrium. If R0 < 1
then the discrete system (2) is unstable at the endemic equilibrium for all h. One can also get
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sufficient conditions by considering the i-th deleted absolute column sums, for which the sufficient
conditions are

h < min

{
2

µ
,

2

µ(2R0 − 1)
,

2

2α+ µ+ ξ1
,

2

w + 2λ+ µ+ ξ2 + 2βi
Λ

µR0

,
2

σ + 2βv
Λ

µR0

}

and µ < 2βeΛ
µR0

, ξ2 + 2 Λ
µR0

< w + µ and 2βvΛ < R0σ.

Similarly, the disease-free equilibrium of the discrete system (2) is (locally) asymptotically sta-
ble if

h < min

{
2

ξ1 + ξ2 + σ
,

2

α+ w + γ + µ
,
2

µ
,

2

α+ µ+ (βi + βv − βe)
Λ
µ

}
and α < w + γ + µ, ξ1 + ξ2 < σ and (βe + βi + βv)

Λ
µ < α+ µ, or if

h < min

{
2

σ + βv
Λ
µ

,
2

α+ w + γ + µ+ ξ1 + βi
Λ
µ

,
2

µ
,

2

2α+ µ+ ξ1 + βe
Λ
µ

}

and βi
Λ
µ + ξ2 < w + γ + µ, βv

Λ
µ < σ and µ < βe

Λ
µ + ξ1. If R0 > 1 then the discrete system (2) is

unstable at the disease-free equilibrium for all h.

Note that the conditions for the parameters have no biological meaning and the given con-
ditions only states local stability. It is also possible to use so-called weighted Gershgorin sets
to get other sufficient conditions[7]. To specify conditions for the global stability, one must use
different methods, for example Lyapunov functions[8].

3 Discussion,Future Directions

By constructing epidemiological models (with the help of mathematics) we can understand the
dynamics and their qualitative characteristics of the different infectious diseases. We can also make
predictions and test the impact of different control strategies. Within the framework of Math
Project II., I considered a COVID-19 model[1], which incorporates an environmental reservoir
as a compartment with its own dynamics. I gave sufficient conditions on the preservation of a
positively invariant (biologically feasible) region for its explicit Euler discretized system. I also gave
sufficient conditions for the step-sizes and the parameters for the stability of the two equilibria.
For future directions, it would be interesting to check the preservation of these properties for
other numerical methods, for example the implicit Euler method. Another possibility is to check
these with other incidence rates, for example the saturated incidence rate, where βe, βi, βv is not
constant but a function of E, I, V : βE(E) = βE0

1+cE , βI(I) =
βI0

1+cI , βV (V ) = βV 0

1+cV , respectively. In
the written report of last semesters Math Project I., the integration of the environmental reservoir
into different patch models was given as a possible future direction. While I was able to incorporate
this additional compartment to two different patch models, I was not able to show any common
properties of these models. Deriving some properties for these models can also be considered as a
possible future direction.
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