The Tversky loss function and its modifications for medical image segmentation

Hidy Gábor Project supervisor: dr. Lukács András

Eötvös Loránd Tudományegyetem Institute of Mathematics

May 19, 2022

Basic notions

Experiments Entropy-based regularisation Bibliography Semantic segmentation Tversky index Tversky loss

Semantic segmentation: input: $\mathbf{x} \in [0, 1]^{D \times H \times W}$ image, output: $\hat{\mathbf{y}} \in [0, 1]^{C \times H \times W}$ prediction target: $\mathbf{y} \in \{0, 1\}^{C \times H \times W}$ mask

C = 1: binary case

 $y_i = 1$: positive pixel

 $y_i = 0$: negative pixel

Basic notions

Semantic segmentation Tversky index

Tversky los

original image

ground truth

raw prediction

threshold 0.25

threshold 0.5

threshold 0.75

Basic notions

Semantic segmentation Tversky index Tversky loss

Tversky index

$$\mathcal{T}_{lpha,eta}(\mathbf{y},\hat{\mathbf{y}}) = rac{\mathsf{TP}}{\mathsf{TP}+lpha\mathsf{FP}+eta\mathsf{FN}}$$

$(\boldsymbol{\alpha},\boldsymbol{\beta}>0,\,\mathbf{y},\hat{\mathbf{y}}\in\{0,1\}^{M}.)$

• doesn't count true negative \Rightarrow good for imbalanced datasets

•
$$\alpha = \frac{1}{2} = \beta$$
: Dice index

• $\alpha = 1 = \beta$: Jaccard index (IoU score)

Semantic segmentation Tversky index Tversky loss

Tversky loss

$$1 - \mathcal{T}_{\alpha, \beta}(\mathbf{y}, \hat{\mathbf{y}})$$

where

$$\mathcal{T}_{lpha,eta}(\mathbf{y},\hat{\mathbf{y}}) = rac{\mathbf{y}\hat{\mathbf{y}} + \delta}{\mathbf{y}\hat{\mathbf{y}} + lpha(\mathbf{1}-\mathbf{y})\hat{\mathbf{y}} + eta\mathbf{y}(\mathbf{1}-\hat{\mathbf{y}}) + \delta}$$

 $(\boldsymbol{lpha}, \boldsymbol{eta} > 0, \ \mathbf{y}, \hat{\mathbf{y}} \in [0, 1]^M.)$

- equal to the Tversky index if $\mathbf{y}, \hat{\mathbf{y}} \in \{0, 1\}^M$
- if $\mathbf{y} \in \{0, 1\}^M$, then $\hat{\mathbf{y}} = \mathbf{y}$ is the unique minimum
- differentiable
- two approaches to calculate the loss ove a batch
 - $\diamond\,$ imagewise loss: calculate for each image then average
 - ◊ batchwise loss: calculate over the whole batch

Basic notions Experiments Entropy-based regularisation Bibliography Dataset Experiment Results

- histopathology slides from the Országos Korányi Pulmonológiai Intézet
- cancerous regions annotated by expert
- processed data: 2800 images, 360 of them positive

Goal: compare imagewise and batchwise Tversky Details:

- model: U-Net
- loss: Dice loss
- optimizer: Adam
- ♦ learning rate: 10⁻⁶
- two different tasks
 - $\diamond~$ segmentation of the whole dataset
 - $\diamond~$ segmentation of only the positive images

Dataset Experiment details **Results**

Results on the whole dataset

Dataset Experiment details **Results**

Results on the positive images

batch size	8		16		32		64	
loss domain	img	batch	img	batch	img	batch	img	batch
avg. prec. ↑	0.746	0.809	0.694	0.771	0.703	0.783	0.717	0.778
bal. acc. ↑	0.873	0.878	0.870	0.877	0.877	0.888	0.860	0.885
Dice idx. ↑	0.635	0.690	0.606	0.665	0.641	0.705	0.593	0.667
Jaccard idx. ↑	0.493	0.549	0.465	0.529	0.476	0.548	0.424	0.502
HD95 ↓	0.164	0.151	0.171	0.149	0.270	0.184	0.377	0.313

Label smoothing

Instead of the target
$$\mathbf{y} \in \{0, 1\}^M$$
, use $\tilde{\mathbf{y}} = (1 - \varepsilon)\mathbf{y} + \frac{\varepsilon}{C}\mathbf{1}$. $(0 < \varepsilon < \frac{1}{2})$.

- combats vanishing gradients
- used in state-of-the-art networks (with crossentropy loss)
 - $\diamond~$ the minimum of crossentropy is still at $\hat{y}=\tilde{y}$

Claim 1

The maximum of $\mathcal{T}_{\alpha,\beta}(\tilde{\mathbf{y}},\cdot)$ is assumed at $\hat{\mathbf{y}} = \mathbf{y}$.

 \Rightarrow label smoothing doesn't work with Tversky loss.

Label smoothing Label noise penalty and confidence penalty

Claim 2

When using crossentropy loss, label smoothing is equivalent to adding $\varepsilon D\left(\frac{1}{C}\mathbf{1}\|\hat{\mathbf{y}}\right)$, where D is the Kullback–Leibler divergence.

- this works with all losses
- $\varepsilon D\left(\frac{1}{C}\mathbf{1}\|\hat{\mathbf{y}}\right)$ can be replaced with $\varepsilon D\left(\hat{\mathbf{y}}\|\frac{1}{C}\mathbf{1}\right)$

Label noise penalty regularisation

$$ilde{\mathcal{L}}(\mathbf{y}, \hat{\mathbf{y}}) = \mathcal{L}(\mathbf{y}, \hat{\mathbf{y}}) - arepsilon \sum_{i=1}^C \log \hat{y}_i$$

Confidence penalty regularisation

$$\mathcal{\tilde{L}}(\mathbf{y}, \hat{\mathbf{y}}) = \mathcal{L}(\mathbf{y}, \hat{\mathbf{y}}) - \varepsilon \mathcal{H}(\hat{\mathbf{y}})$$

- S. S. M. Salehi, D. Erdogmus, A. Gholipur. Tversky loss function for image segmentation using 3D fully convolutional deep networks. *Machine Learning in Medical Imaging*, September 2017, pp. 379–387.
- [2] C. Szegedy et al. Rethinking the Inception architecture for computer vision. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016, pp. 2818–2826.
- [3] G. Pereyra *et al.* Regularizing neural networks by penalizing confident output distributions. arXiv preprint, Jan 2017. arXiv:1701.06548v1 [cs.NE]
- [4] O. Ronneberger, P. Fischer, T. Brox. U-Net: Convolutional networks for biomedical image segmentation. *Medical Image Computing and Computer-Assisted Intervention*, November 2015, pp. 234–241.