Chapter 1

Proposal

The general form of Laplace’s equation is as follows. Let n > 2, 2 C R" a connected, open,
bounded Lipschitz domain and g: 9€2 — R. Consider Laplace’s equation

Au(x) =0 (x € Q),

u(x) = g(x) (x € 09).
A well known fact from the theory of partial differential equations is that the fundamental
solution for the operator (—A) — i.e. the solution to the equation —Au = §g — is:

E,(x) == *%IHHXHQ, forn=2, xeR"\{0},
n = 1 fOl“Tl}B, XER”\{O},

(n—=2)Snlx[l3 >

(1.1)

(1.2)

where S,, is the surface area of the n dimensional unit ball.
Article |2] shows a working method to find the solution to the equation (1.1) for a non-trivial
Q) C R? in a couple points {Xg,...,xy 1} (I € NT), which is as follows:

e take a number of boundary points {zg,...,zx 1} C 9Q, (K € N*),
e and a number of exterior points {wg,...,wr_1} C extQ (L € NT).
e Consider the functions Gy, (x) = Es(x — wy), and

take a one-layer dense NN whose training set is

[(Gunl20), Con(m), - G 1)), (T (30), P), - Pon0)) |

N - =0

-~

input:=§; outp?lrt::m
That is, the goal is to find a map @: R — R? for which a(&) =n for 1 € {0,...,L —1}

This is possible using a NN, which will give a reasonably accurate estimation of the values.
{u(x;)}Z; given the values {g(zx)}i_," on the boundary in the following way:

ﬂ(g(zo)ag(zl) e 79(ZK71)1) ~ (y(xo)a u(xq). .. 7U(X171))/)-
given bou;gary values approxim;?ed values

In short, this NN is able to learn what the values of a fundamental solution should be in the
interior points {x;}/Z;, given the function values in the boundary points {zo, ...,zx_1}. From
that, one may estimate the solution in the desired points.

Remark 1.1. The indexes run from 0 specifically to be congruent with the notation in the
implementation, which is done in the programming language python.

3

Our first goal is to modify this model to solve the more general Poisson’s equation: Given
a function f: Q — R, solve

(1.3)

Au(x) = f(x) (xem,}
u(x) = g(x) (x € 09).

A couple of apriori thoughts:

it is obvious that the model needs to take into account some values of f inside the domain
we will probably have to introduce some new functions ¥ for which AW = 0.

It is not at all trivial as to what class of functions to pick here. Intuitively, a good candidate
for the class of functions to consider could be radial functions, as the differential operator
A is invariant for orthogonal transformations.

For the sake of numerical stability, the singularities of all functions — if any — should be
in ext €2, just like in the original model.

The span of {AW,},c4 (for some countable index set A) should be dense in some norm
— for instance the ||.||y= norm — so that we have a chance to generalize the method for a
sufficiently large set of possible f RHS functions. This is a very hard theoretical property,
whose verification might fall out of the scope of this thesis.

Such a well behaved family of functions is currently unknown. Article || proposes functions
of the form W(r) = for similar applications.

It also might prove useful in decreasing the numerical cost of these calculations if we change
the structure of the NN from a dense connection to a convolutional one. The intuition behind
this is that both the laplacian and the function itself are influenced by its local properties more
than its global properties. We might want to experiment with multi-layer constructions and
different activation functions. However, these options don’t seem to offer any obvious benefits
intuitively, they might still prove useful in practice.

This thesis will explore the feasibility of the following approaches:

Modify said linear NN model by including information from the interior of the domain.

How to structure the data such that the geometry of the problem is preserved and utilized:
experiment with convolutional NN structures.

Testing and researching in the literature the different possible layer structures, activation
function and bias choices suitable for this task.

Experimenting with different training strategies: variable learning rate, different optimizer
methods etc.

Create a trained model that is as generalized as possible in the following directions:
different f and g choices, different choices for 2 and possibly even different choices for
differential operators. However, this later task may very well be beyond the scope of this
thesis.

Chapter 2

Estimating with a linear NN structure

Let us change the training set and the testing set of the model described in Chapter 1 as follows.
Let Q C R™ be a bounded open Lipschitz-domain. Let

e X = {x;}/Z7 C Qbeaset of afew interior points where the solution is to be approximated,
o Y = {y;}/25 C 2 be basis points of

o Uy (x) = ¥(x —yj) radial functions,

o {z}7' C 9Q boundary points, and finally

o {Wl}lL:Bl C ext{) a number of exterior points, which serve as a center of the Green
functions

o Gy, (x) = E,(x —wy).

Remark 2.1. The restriction that w; be exterior points of €2 is required due to the fact that
Gw,(x) has a singularity at x = wy.

Remark 2.2. An argument for the inclusion of X in the set T is the following. Assume that we
have u,u € W22(Q) such that for all x; € X we have u(x;) = (x;), but u # @ on Q. In this
case, the algorithm wouldn’t know which function to approximate. This might not cause too
great fluctuations, but it’s worth trying to avoid this issue.

Introduce the notation 7= X UY = {t;n M=}, Let the elements of the training set be the
following:

I Belonging to the points y; — for every j € {0,1,...,J — 1} — an input-output pair:

(AW, (T), By,(Z)) = Wy (X)),
ERM+K input €R! output

IT and belonging to the points w — for every I € {0,1,...,L — 1} — an input-output pair:

(0.Gw(2)) = Gwm(X) .
N———— ——

€RM+K input €R! output

This amounts to a total number of J + L input-output pairs.
Now let the the test set take the form of

((f(1)),(9(2))) € RMHE.

For the sake of clarity, it is perhaps worth taking a look at the training inputs and outputs

once more as matrices. The input matrix takes the form

A\IJYO (to) A\ijo (tl) A\IJ}’O (tM—l) \IIYO (ZO) \IIYO (Zl) \Ich:) (ZK—l)
A\IJYI (t()) A\I}}’l (tl) A\IJYI (thl) \DY1 (ZO) \DY1 (Zl) \Il}’l (ZKfl)
A\IJYJq(tO) A\ij.]—l (tl) A\Ilqu (tM—l) \IJYJA (ZO) \IIYJA Zl) \IJYJ—l ZK—l)
0 0 0 GWO (ZO) GWO (Zl) GWD (ZK—l)
0 0 0 Gwi(2z0) Gwy(21) Gw, (ZKx-1)
0 0 0 GWL—l (ZO) GWL—l (Zl) GWL—I (ZKfl)

\IJYO (XO) \IJYO (Xl) \IIYO (XI—I)
\ijl (XO) qj}’l (Xl) \IJ}’1 (XI—1>
\IJYJ—I XU) \IJYJ—1 Xl) lIIyJ—1 XI—l)
GWO (XO) GWO (Xl) GWO (XI—l)
Gw, (X0) Gw, (X1) Gw, (X1-1)
GWL—I (XO) GWL—l (Xl) GWL—l (XI—I)

It should be noted that the desired map is between RM*+X and R, however it is not obvious
whether it is linear or not. A first guess could be that it is, and that we should try to find a

suitable map in L(RM T RT). Since dim (L(RM T R))

= (M+K)-I, our first attempt should

have at least this many adjustable parameters. For this purpose, a fully connected network with

no biases and linear activation functions should suffice.

2.1 Preliminary results for the one layer linear model

At this stage the linear model attempts to fit a L(RM+X R!) map onto J + L data points. For
this to be reasonably efficient and quick, we suspect that J 4+ L and (M + K) - I should be

roughly equal.

Some of the numerical experiments shall be included in the presentation, however, further

fine tuning of the parameters is still much needed.

