Presentation of Individual Project II.

Miskei Ferenc Istvan (YC62WJ) - Applied Mathematics MSc

19 May 2022



Importance of PDE’s

» Describe the evolution of continuous systems
» Numerous applications in STEM, examples:
» Transport equation: O:u + (v,grad u) =0, (v € R" fixed)
> Heat (diffusion) equation: 0;u — aAu =0, (a € R fixed)
> Wave equation: 92u — c?Au =0, (c € (0, +00) fixed)
> Laplace and Poisson’s equations: Au = f, (f € L?() fixed)
» and many more...



Neural Networks == PDE solution

[2] shows working mechanism to teach a NN to estimate the
solution of Laplace's equation (Au = 0 with a non-homogenous
Dirichlet-type boundary condition) in a nontrivial Q C R?:




Now

> We try to modify the previous method to give a solution for
Poisson's equation (Au = f with a Dirichlet boundary
condition)

» Obviously we need information from inside Q
» Fundamental functions — Radial functions



The domain and explanations

» Cyan: W = {W|},L:_(;l C € a number of exterior points, which
serve as a center of the Green functions

» Blue: Z = {zk}ngol C 02 boundary points,
» Purple: Y = {y; j!:_()l C Q be basis points of radial functions.

» Dark cyan: X = {x; f;& C Q be a set of a few interior points
where the solution is to be approximated,
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Goals for this semester:

First attempt: linear regression (not really NN yet)
Defining and verifying the correct data structures,
Picking appropriate platform,

Feeding data to NN

Tweaking the number of points, radial functions used for
better performance.



Data to be fed

Belonging to the points yj — for every j € {0,1,...,J — 1} -
an input-output pair:

(AW (T), Wy, (2)) = Wy (X) ,
——
ERM+K input €R/ output

and belonging to the points w — for every / € {0,1,...,L—1}
— an input-output pair:

(0, 6w (2)) = Gu(X) -
—— ——
ERM+K input €R/ output

This amounts to a total number of J + L input-output pairs.
Now let the the test set take the form of

((F(T)), (g(2))) € RM*.



Data to be fed: matrix representation

The input matrix takes the form

AWy, (to) AWy (t1) S AWy (tm_1) Wy, (20) Wyo(21) S Vyo(zk—1)
Ay, (to) AWy (t1) ... AWy (tm-1) Wy, (z0) Yy, (21) ce Wy (k1)
AWy, L (to) AWy,  (t1) ... AWy,  (tm—1) Vy,_,(z0) Wy, ,(z1) ... Wy, (zk-1)
0 [ S 0 Gwyg (20) Gwg (1) R Gwg (zZk —1)
0 0 S 0 Gw, (20) Gw, (21) S Gw, (zZk—1)
0 0 . 0 GW|_,1(ZO) GW|_,1(21) . GWL,l(ZK—i)

while the output matrix looks as follows

"Uyg (xo0) “’yo (x1) (RN "Uyg(xl—l)
Wy, (x0) Wy, (x1) e Wy, (x1-1)
Uy, y (o) Wy, () o Wy Gasa)
Gwo (x0) Gwo (x1) e Gwo (x1—1)

1 (x1—1)

Gw, (x0) Gwy (x1) e Gw

Gwp _y(x0)  Gwp_ (1) .. Gwp_,(a-1)
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Dimensions and linear regression

J + L input vectors, each of length M + K

J + L corresponding output vectors, each of length /

First trial: find L € V := L(RM+K R/) linear map.

dim V should be relatively close to the parameters of the NN.

Given L, the numerical estimate (@(xo), éi(x1) ", ... d(xi—1))
should be L - v, where

v = (AFf(to), F(t1), ..., Af(tm_1), 8(z0), &(z1), - - -, &z _1))



Platform

» Visual Studio Code and local experiments.

» Google Colaboratory and GPU enhanced experiments.



Tweaking parameters

» One problem: I, J, K, L are not independent at the moment.

» It's reasonable to expect that dim V = [ - (M + K) should be
about J+ L

» Tweaking the parameters like this did not yield the expected
results



Experiments

» Refer to the PDF.



Near future goals

Making the linear model relatively efficient.
Restructuring data: convolutional approach
Experimenting with different NN structures

Storing weights so that

different f and g functions may be given as inputs



Far future

Experimenting with techniques from image processing
Different types of differential operators

Time dependence

Different Q

More dimensions

. and whatever we may imagine.
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