# Presentation of Individual Project II. 

Miskei Ferenc István (YC62WJ) - Applied Mathematics MSc

19 May 2022

## Importance of PDE's

- Describe the evolution of continuous systems
- Numerous applications in STEM, examples:
- Transport equation: $\partial_{t} u+\langle v, \operatorname{grad} u\rangle=0,\left(v \in \mathbb{R}^{n}\right.$ fixed $)$
- Heat (diffusion) equation: $\partial_{t} u-\alpha \Delta u=0,(\alpha \in \mathbb{R}$ fixed)
- Wave equation: $\partial_{t}^{2} u-c^{2} \Delta u=0,(c \in(0,+\infty)$ fixed)
- Laplace and Poisson's equations: $\Delta u=f,\left(f \in L^{2}(\Omega)\right.$ fixed $)$
- and many more...


## Neural Networks $\Longrightarrow$ PDE solution

[2] shows working mechanism to teach a NN to estimate the solution of Laplace's equation ( $\Delta u=0$ with a non-homogenous Dirichlet-type boundary condition) in a nontrivial $\Omega \subseteq \mathbb{R}^{2}$ :

## Now

- We try to modify the previous method to give a solution for Poisson's equation ( $\Delta u=f$ with a Dirichlet boundary condition)
- Obviously we need information from inside $\Omega$
- Fundamental functions $\rightarrow$ Radial functions


## The domain and explanations



- Cyan: $W=\left\{w_{1}\right\}_{l=0}^{L-1} \subset \Omega$ a number of exterior points, which serve as a center of the Green functions
- Blue: $Z=\left\{\mathrm{z}_{\mathrm{k}}\right\}_{k=0}^{K-1} \subset \partial \Omega$ boundary points,
- Purple: $Y=\left\{\mathrm{y}_{\mathrm{j}}\right\}_{j=0}^{J-1} \subset \bar{\Omega}$ be basis points of radial functions.
- Dark cyan: $X=\left\{\mathrm{x}_{\mathrm{i}}\right\}_{i=0}^{I-1} \subset \Omega$ be a set of a few interior points where the solution is to be approximated,


## Goals for this semester:

- First attempt: linear regression (not really NN yet)
- Defining and verifying the correct data structures,
- Picking appropriate platform,
- Feeding data to NN
- Tweaking the number of points, radial functions used for better performance.


## Data to be fed

- Belonging to the points $\mathrm{y}_{\mathrm{j}}$ - for every $j \in\{0,1, \ldots, J-1\}$ an input-output pair:

$$
\underbrace{\left(\Delta \Psi_{\mathrm{y}_{\mathrm{j}}}(T), \Psi_{\mathrm{y}_{\mathrm{j}}}(Z)\right)}_{\in \mathbb{R}^{M+K} \text { input }} \rightarrow \underbrace{\Psi_{\mathrm{y}_{\mathrm{j}}}(X)}_{\in \mathbb{R}^{\prime} \text { output }}
$$

- and belonging to the points $\mathrm{w}_{\mathrm{I}}$ - for every $I \in\{0,1, \ldots, L-1\}$ - an input-output pair:

$$
\underbrace{\left(0, G_{\mathrm{w}_{1}}(Z)\right)}_{\in \mathbb{R}^{M+K} \text { input }} \rightarrow \underbrace{G_{\mathrm{w}_{1}}(X)}_{\in \mathbb{R}^{\prime} \text { output }} .
$$

This amounts to a total number of $J+L$ input-output pairs. Now let the the test set take the form of

$$
((f(T)),(g(Z))) \in \mathbb{R}^{M+K} .
$$

## Data to be fed: matrix representation

The input matrix takes the form
while the output matrix looks as follows

## Dimensions and linear regression

- $J+L$ input vectors, each of length $M+K$
- $J+L$ corresponding output vectors, each of length I
- First trial: find $L \in V:=\mathcal{L}\left(\mathbb{R}^{M+K}, \mathbb{R}^{\prime}\right)$ linear map.
- $\operatorname{dim} V$ should be relatively close to the parameters of the NN.
- Given $L$, the numerical estimate $\left(\tilde{u}\left(\mathrm{x}_{0}\right), \tilde{u}\left(\mathrm{x}_{1}\right)^{T}, \ldots \tilde{u}\left(\mathrm{x}_{\mathrm{I}-1}\right)\right)$ should be $L \cdot v$, where

$$
v=\left(\Delta f\left(\mathrm{t}_{0}\right), f\left(\mathrm{t}_{1}\right), \ldots, \Delta f\left(\mathrm{t}_{\mathrm{M}-1}\right), g\left(\mathrm{z}_{0}\right), g\left(\mathrm{z}_{1}\right), \ldots, g\left(\mathrm{z}_{\mathrm{K}-1}\right)\right)^{T}
$$

## Platform

- Visual Studio Code and local experiments.
- Google Colaboratory and GPU enhanced experiments.


## Tweaking parameters

- One problem: $I, J, K, L$ are not independent at the moment.
- It's reasonable to expect that $\operatorname{dim} V=I \cdot(M+K)$ should be about $J+L$
- Tweaking the parameters like this did not yield the expected results


## Experiments

- Refer to the PDF.


## Near future goals

- Making the linear model relatively efficient.
- Restructuring data: convolutional approach
- Experimenting with different NN structures
- Storing weights so that
- different $f$ and $g$ functions may be given as inputs


## Far future

- Experimenting with techniques from image processing
- Different types of differential operators
- Time dependence
- Different $\Omega$
- More dimensions
- ... and whatever we may imagine.


## Bibliography

嗇 Cheng, A.H.D and Hong, Y.: An overview of the method of fundamental solutions-Solvability, uniqueness, convergence, and stability, Engineering Analysis with Boundary Elements 120, pp. 118-152, 2020.
idemajdkelllink
T Haffner, D. and Izsák, F.: Solving the Laplace equation by using neural networks, to appear in Annales Univ. Sci. Budapest., Sec. Math. idemajdkelllink
目 Isaac Elias Lagaris, Aristidis Likas and Dimitrios I. Fotiadis: Artificial Neural Networks for Solving Ordinary and Partial Differential Equations, IEEE Transactions on Neural Networks, vol. 9, no. 5, 1998. szeptember https://faculty.sites.iastate.edu/hliu/files/ inline-files/Anns_lagaris1998_0.pdf

