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Importance of PDE’s

▶ Describe the evolution of continuous systems
▶ Numerous applications in STEM, examples:

▶ Transport equation: ∂tu + ⟨v , grad u⟩ = 0, (v ∈ Rn fixed)
▶ Heat (diffusion) equation: ∂tu − α∆u = 0, (α ∈ R fixed)
▶ Wave equation: ∂2

t u − c2∆u = 0, (c ∈ (0,+∞) fixed)
▶ Laplace and Poisson’s equations: ∆u = f , (f ∈ L2(Ω) fixed)
▶ and many more...



Neural Networks =⇒ PDE solution

[2] shows working mechanism to teach a NN to estimate the
solution of Laplace’s equation (∆u = 0 with a non-homogenous
Dirichlet-type boundary condition) in a nontrivial Ω ⊆ R2:



Now

▶ We try to modify the previous method to give a solution for
Poisson’s equation (∆u = f with a Dirichlet boundary
condition)

▶ Obviously we need information from inside Ω

▶ Fundamental functions → Radial functions



The domain and explanations

▶ Cyan: W = {wl}L−1
l=0 ⊂ Ω a number of exterior points, which

serve as a center of the Green functions
▶ Blue: Z = {zk}K−1

k=0 ⊂ ∂Ω boundary points,
▶ Purple: Y = {yj}J−1

j=0 ⊂ Ω be basis points of radial functions.
▶ Dark cyan: X = {xi}I−1

i=0 ⊂ Ω be a set of a few interior points
where the solution is to be approximated,



Goals for this semester:

▶ First attempt: linear regression (not really NN yet)
▶ Defining and verifying the correct data structures,
▶ Picking appropriate platform,
▶ Feeding data to NN
▶ Tweaking the number of points, radial functions used for

better performance.



Data to be fed

▶ Belonging to the points yj – for every j ∈ {0, 1, . . . , J − 1} –
an input-output pair:

(∆Ψyj(T ),Ψyj(Z ))︸ ︷︷ ︸
∈RM+K input

→ Ψyj(X )︸ ︷︷ ︸
∈RI output

,

▶ and belonging to the points wl – for every l ∈ {0, 1, . . . , L− 1}
– an input-output pair:

(0,Gwl(Z ))︸ ︷︷ ︸
∈RM+K input

→ Gwl(X )︸ ︷︷ ︸
∈RI output

.

This amounts to a total number of J + L input-output pairs.
Now let the the test set take the form of

((f (T )), (g(Z ))) ∈ RM+K .



Data to be fed: matrix representation
The input matrix takes the form


∆Ψy0 (t0) ∆Ψy0 (t1) . . . ∆Ψy0 (tM−1) Ψy0 (z0) Ψy0 (z1) . . . Ψy0 (zK−1)
∆Ψy1 (t0) ∆Ψy1 (t1) . . . ∆Ψy1 (tM−1) Ψy1 (z0) Ψy1 (z1) . . . Ψy1 (zK−1)

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

. . .
.
.
.

∆ΨyJ−1 (t0) ∆ΨyJ−1 (t1) . . . ∆ΨyJ−1 (tM−1) ΨyJ−1 (z0) ΨyJ−1 (z1) . . . ΨyJ−1 (zK−1)

0 0 . . . 0 Gw0 (z0) Gw0 (z1) . . . Gw0 (zK−1)
0 0 . . . 0 Gw1 (z0) Gw1 (z1) . . . Gw1 (zK−1)

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

. . .
.
.
.

0 0 . . . 0 GwL−1 (z0) GwL−1 (z1) . . . GwL−1 (zK−1)


,

while the output matrix looks as follows


Ψy0 (x0) Ψy0 (x1) . . . Ψy0 (xI−1)
Ψy1 (x0) Ψy1 (x1) . . . Ψy1 (xI−1)

.

.

.
.
.
.

. . .
.
.
.

ΨyJ−1 (x0) ΨyJ−1 (x1) . . . ΨyJ−1 (xI−1)

Gw0 (x0) Gw0 (x1) . . . Gw0 (xI−1)
Gw1 (x0) Gw1 (x1) . . . Gw1 (xI−1)

.

.

.
.
.
.

. . .
.
.
.

GwL−1 (x0) GwL−1 (x1) . . . GwL−1 (xI−1)





Dimensions and linear regression

▶ J + L input vectors, each of length M + K

▶ J + L corresponding output vectors, each of length I

▶ First trial: find L ∈ V := L(RM+K ,RI ) linear map.
▶ dimV should be relatively close to the parameters of the NN.
▶ Given L, the numerical estimate

(
ũ(x0), ũ(x1)

T , . . . ũ(xI−1)
)

should be L · v , where

v =
(
∆f (t0), f (t1), . . . ,∆f (tM−1), g(z0), g(z1), . . . , g(zK−1)

)T



Platform

▶ Visual Studio Code and local experiments.
▶ Google Colaboratory and GPU enhanced experiments.



Tweaking parameters

▶ One problem: I , J,K , L are not independent at the moment.
▶ It’s reasonable to expect that dimV = I · (M + K ) should be

about J + L

▶ Tweaking the parameters like this did not yield the expected
results



Experiments

▶ Refer to the PDF.



Near future goals

▶ Making the linear model relatively efficient.
▶ Restructuring data: convolutional approach
▶ Experimenting with different NN structures
▶ Storing weights so that
▶ different f and g functions may be given as inputs



Far future

▶ Experimenting with techniques from image processing
▶ Different types of differential operators
▶ Time dependence
▶ Different Ω
▶ More dimensions
▶ ... and whatever we may imagine.
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