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Introduction

In many optimization problems, having access to direct gradient information is conve-
nient and reliable, it enable us to use algorithms such as the gradient descent method.
There are however, a large number of problems where the direct gradient measurements
are not available. Due to this issue, there is a lot of interest in algorithms that do not
depend on direct gradient measurements. These algorithms are called gradient-free
algorithms, and in this report we will be talking about two of them : Finite Difference
Stochastic Approximation algorithm (FDSA) and Simultaneous Perturbation Stochas-
tic Approximation algorithm (SPSA). We shall also present an enhanced version called
the Momentum Acceleration of the SPSA and we will compare this enhanced version
with the FDSA.
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1

FDSA

1.1 Notation

The FDSA algorithm is an alternative to the stochastic gradient algorithm, where we
only have access to noisy measurements of the objective function. The key idea to this
algorithm is to replace the stochastic gradient which we don’t have by an estimate of
it, denoted by ĝk(θ̂k) =

∂L
∂θ

. This estimate approximates the stochastic gradient using
the Finite-Difference Method, and in our case we will use the two-sided FD,then the
gradient estimate will have the following form :

ĝk(θ̂k) =


yk(θ̂k + ck.ξ1)− yk(θ̂k − ck.ξ1)

2ck...
yk(θ̂k + ck.ξp)− yk(θ̂k − ck.ξp)

2ck


Such that : ξi is a column vector with p components, 1 in it’s i-th row and o everywhere
else and ck is a gain coefficient .
we give the recursive procedure for the FDSA algorithm :

θ̂k+1 = θ̂k − ak.ĝk(θ̂k)

where ak is a gain coefficient (i.e a positive scalar valued sequence which is used to
control the magnitude of the steps of the algorithm).
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1.2 Convergence

We will present two sets of conditions, each one having it’s own interpretation ( statis-
tics and engineering), which will be used for the convergence theorem.
Statistical conditions:

-A1: ak > 0, ck > 0, ak → 0, ck → 0,
∑∞

k=0 ak = ∞,
∑∞

k=0 akck < ∞, and∑∞
k=0 a

2
k/c

2
k < ∞.

-A2: There is a unique minimum θ∗ such that for every η > 0, inf∥θ−θ∗∥>η ∥g(θ)∥ > 0

and inf∥θ−θ∗∥>η [L(θ)− L (θ∗)] > 0

-A3:For all i and k, E
[(

ε
(i+)
k − ε

(i−)
k

)
| Jk

]
= 0 a.s. and E

[(
ε
(i±)
k

)2

| Jk

]
≤ C a.s.

for some C > 0 that is independent of k and θ.
-A4: The Hessian matrix H(θ) = ∂2L/∂θ∂θT exists and is uniformly bounded in norm
for all θ ∈ Rp

Where, ε(i±)
k = ε

(
θ̂k ± ckξi

)
, Jk =

{
θ̂0, θ̂1, . . . , θ̂k

}
Engineering conditions:

-B1: ak > 0, ck > 0, ak → 0, ck → 0,
∑∞

k=0 ak = ∞, and
∑∞

k=0 a
2
k/c

2
k < ∞.

-B2:Let g(θ) be continuous on Rp. With Z(τ) ∈ Rp representing a time-varying func-
tion ( τ denoting time), suppose that the differential equation given by dZ(τ)/dτ =

−g(Z(τ)) at point θ∗ has the following two requirements: (i) For every η > 0, there
exists a δ(η) such that ∥Z(τ)− θ∗∥ ≤ η for all τ > 0 whenever ∥Z(0)− θ∗∥ ≤ δ(η),
and (ii) there exists a δ0 such that Z(τ) → θ∗ as τ → ∞ whenever ∥Z(0)− θ∗∥ ≤ δ0.)
-B3: supk≥0

∥∥∥θ̂k∥∥∥ < ∞ a.s. Further, θ̂k lies in a compact subset of the "domain of
attraction" for the differential equation in B2 infinitely often.
-B4: Same as condition A3

-B5: The third derivatives L′′′
iii(θ) are continuous and uniformly bounded for all

i = 1, 2, . . . , p and θ ∈ Rp.

Theorem:

Let’s assume that the conditions of either one of the two sets given above hold. let’s
also suppose that θ ∈ Rp and θ⋆ is the unique minimum of the loss function L, then
for the FDSA ,

θ̂k → θ∗ a.s. as k → ∞
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1.3 Asymptotic Normality

Theorem: For gain sequences choice : ak =
a

(k + 1 + A)α
and ck =

c

(k + 1+)γ
,

where a,c,α,γ are positive, A is non-negative. Let’s assume that β = α − 2 × γ > 0,
3× γ − α

2
≥ 0, and that the algorithm converges then we have the following result :

kβ/2
(
θ̂k − θ∗

)
dist.−→ N (µFD,ΣFD)

Where , µFD is a mean vector that depends on the Hessian H (θ∗) and the third deriva-
tive L′′′ (θ∗) ,ΣFD is a covariance matrix that depends on H (θ∗), and both of these
two parameters depend on the coefficients a, α, c, and γ.
Remark: the previous results says that the rate at which θ̂k approaches θ⋆ is propor-
tional to k−β/2 for large k.
Implications:

If condition A1 holds then α > 1/2 and γ > 0, which implies that 0.6 < α ≤ 1,
0.1 < γ < 1/2 and α − γ > 1/2. This implies again that β is maximized at α = 1

and γ = 1/6, then it follows that for large k, the rate of convergence is proportional
to k−

√
3.

1.4 Numerical figures

In this subsection , we will present three plots from the implementation of the
algorithm over 40 samples and each sample run trough 100 iterations. We shall
consider, a quadratic test loss function mainly L(θ1, θ2) = θ21 + θ22, where θ = [θ1, θ2]

T

and we note that L(θ) = 0 at θ = [0, 0]T (the optimum where the loss function is
minimized). We also assume that the function measurements are taken with i.i.d
noise having distribution N (0, 1). We let, θ̂0 (initial value of the parameter) to be
generated randomly,we also choose the coefficient to be in the procedure as : A=10,
c=0.05, a=0.5, α = 0.602 and γ = 0.101.

-The first figure, represents the 40 (of each sample) trajectories of the θ̂k trough
the 100 iterations(k=1:100), and it can be seen that they all reach the optimum value
no matter at which point the procedure started
-The second figure, each curve corresponds to the plot of the distances of the θ̂k from
the optimum trough all iterations , and there 40 curves, all of them seems to converge
to zero, which means that as the number of iterations grows, the algorithm gives a
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Figure 1.1: First figure

better approximation to the optimum.

-The third plot, is a curve where each point on it represents the standard deviation
of the distances across all 40 samples , per iteration. We remark that as the number
of iterations grows, the standard deviation of the distances converges to zero.
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Figure 1.2: Second figure

Figure 1.3: Third figure

8



2

SPSA

2.1 SPSA Algorithm

The SPSA algorithm, differs from the FDSA, where instead of using 2.p loss measure-
ments in the former, we will this time use only a fixed number of loss measurements
which is 2. We will rely on the method of Simultaneous Perturbation, to achieve such a
feat, where instead of perturbing each coordinate of theta every time , we will perturb
all the coordinate of theta one time, randomly, using a generated random vector (that
has same dimension as the parameter) from a Bernoulli distribution.
Similarly to the FDSA, we will use consider the case where we only have acces to the
noisy measurements. Which means that the algorithm is based on the y(θ) = L(θ)+ε.
For this algorithm, we will use a different way to approximate the stochastic gradient,
where we shall inject Monte-Carlo randomness in the search direction as the algorithm
iterates towards a solution, additionally we will combine this random choice with a
similar method to the Finite-Difference aproximation. The gradient estimate for the
SPSA will have the following form :

ĝk(θ̂k) =


yk(θ̂k + ck.∆k)− yk(θ̂k − ck.∆k)

2ck.∆k1...
yk(θ̂k + ckk.∆k)− yk(θ̂k − ckk.∆k)

2ck.∆kp


Where ∆k is the random perturbation vector with p components and with zero mean
and ck is a positive scalar.
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we give the recursive procedure for the SPSA algorithm :

θ̂k+1 = θ̂k − ak.ĝk(θ̂k)

where ak is a gain coefficient.

2.2 Convergence

Conditions for convergence: Similarly to the previous chapter, we will introduce
a set of conditions, which are required by the next theorem.
Engineering conditions:

-C1: Same as condition B1

-C2: Same as condition B2

-C3: Same as condition B3

-C4:For allk,E
[(

ε
(+)
k − ε

(−)
k

)
| ℑk,∆k

]
= 0 and the ratio of measurement to pertur-

bation is such that E

[(
y
(
θ̂k ± ck∆k

)
/∆ki

)2
]

is uniformly bounded (over k and i ).

-C5: the loss function L is three times continuously differentiable and bounded on Rp

-C6: The {∆ki} are independent for all k, i, identically distributed for all i at each
k, symmetrically distributed about zero and uniformly bounded in magnitude for all
k, i.

Theorem:

Let’s assume that all the previous conditions holds, and we suppose again that θ⋆ is
the unique minimum. Then for the SPSA algortihm we have the following result :

θ̂k → θ∗ a.s. as k → ∞

2.3 Asymptotic Normality

Additional conditions for Asymptotic Normality

-C7:The continuity and equicontinuity assumptions about E

[(
ε
(+)
k − ε

(−)
k

)2

| ℑk

]
in

Spall (1992, Prop. 2) [2]
-C8:H (θ∗) is positive definite where H(θ) is the Hessian matrix of L(θ). Further, let
λi denote the i th eigenvalue of aH (θ∗) (the a here is the a in ak ). If α = 1, then
β < 2mini (λi).
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-C9:E (∆2
ki) → ρ, E

(
∆−2

ki

)
→ ρ′, and E

[(
ε
(+)
k − ε

(−)
k

)2

| ℑk

]
→ ρ′′ for strictly positive

constants ρ, ρ′, and ρ′′ (a.s. in the latter case) as k → ∞ (often, E (∆2
ki) and E

(
∆−2

ki

)
will be equal to ρ and ρ′, respectively).

Theorem:

Suppose that ak =
a

(k + 1 + A)α
and ck =

c

(k + 1+)γ
, where a,c,α,γ are positive, A is

non-negative, β = α − 2× γ > 0, 3× γ − α
2
≥ 0, all the conditions from C1 up to C9

holds , then for the SPSA algorithm, we have the following result :

kβ/2
(
θ̂k − θ∗

)
dist.−→ N (µSP,ΣSP) as k → ∞

where µSP and ΣSP are respectively the mean vector and the covariance matrix

2.4 Numerical figures

In this section, similarly to the previous Implementation section of the FDSA we will
also look at three figures, where each figure has the same explanation given in the
case of the FDSA algorithm.
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Figure 2.1: First figure
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Figure 2.2: Second figure

Figure 2.3: Third figure
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3

SPSA with momentum

3.1 SPSA with momentum

There has already been done work on gradient descent with momentum done by Math-
ematician Boris Polyak, where the idea of momentum is used to accelerate the opti-
mization process using gradient descent algorithm. Where the recursive procedure for
gradient descent with momentum has the following form :

θ̂k+1 = θ̂k − ak.ĝk(θ̂k) + b.(θ̂k − θ̂k−1)

Where ĝk is the gradient of an objective function, ak a a gain coefficient, b is the
momentum coefficient and θ̂k is the parameter estimate at the k-th iteration. The key
here , is that this enhanced method, uses additional information of the history of the
algorithm to make the algorithm more efficient.
We would like to extend this accelaration idea , to the SPSA algorithm, mainly in the
recursive procedure of the SPSA algorithm we also add the momentum part :

θ̂k+1 = θ̂k − ak.ĝk(θ̂k) + b.(θ̂k − θ̂k−1)

Where ĝk this time represent the gradient approximation using the simultaneous per-
turbation method.
First, in the next section, we will try to show numerically that this method indeed
work in the sense that the trajectory of the thetas in the algorithm will converge to
an optimum, and that the distance between the thetas and the optimum will also
converge to zero. Later in the next chapter, we will try to prove numerically that this
enhanced version of the SPSA is more efficient than the normal SPSA Algorithm.
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Figure 3.1: First figure

3.2 Numerical proof that the SPSA with momentum

works

The next three figures, have the same explanation as the previous description given in
the previous chapter. But, the difference this time, is that : Unlike the previous two
algorithm, which have convergence theories behind them and it make sense that the
trajectories should behave in the way shown in the figures, (i.e, trajectories of thetas
converging to the optimum). This time, for this modified SPSA algorithm, as far as I
searched , I unfortunately did not stumble upon any convergence theory material. The
first figure, shows a sample of 40 experience, starting every thing from the beginning,
each having different starting point and all converging to the optimum, this shows the
potential to be a numerical proof. The inference of the remaining two figures, also
suggest that this enhanced SPSA tend to have similar convergence as to the previous
two algorithms.
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Figure 3.2: Second figure

Figure 3.3: Third figure
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4

SPSA with momentum and FDSA

4.1 Comparison between SPSA and FDSA

The first obvious difference between FDSA and SPSA, is that the SPSA algorithm
requires only 2 loss measurements per iterations, in contrast to the FDSA algorithm
that requires 2.p loss measurements per iterations. This difference has the potential
to imply that the SPSA is more efficient than the FDSA, but that’s only in the case
if the SPSA won’t require more iterations to give an optimum estimate as good as
the optimum estimate from the FDSA algorithm, since it’s obvious that the Finite
Difference method has better approximation to the gradient than the Simultaneous
Perturbation method. Mathematician Spall, discussed that using the asymptotic
normality of both the FDSA and SPSA,assuming that 3.γ − α

2
> 0 with α = 0.602,

γ = 0.101 and if both algorithm are using the same gain sequences ak and ck we get
the following result .

Theorem The SPSA and FDSA recursions result in the same level of statistical ac-
curacy for a given number of iterations, although SPSA uses only 2 loss measurements.

Remark: The previous theorem, can be reformulated to say that, as the
number of loss measurements in both procedures gets large, this implies that the p-
fold saving per iterations becames a p-fold saving in the over all optimization process.
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4.2 Comparaison between SPSA with momentum

and FDSA

Numerical proof that SPSA with momentum is better than FDSA

Let’s consider the example where the parameter θ ∈ R2, θ = [θ1, θ2]
T and the loss

function L(θ1, θ2) = θ21 + θ22, and we note that L(θ) = 0 at θ = [0, 0]T (the optimum
where the loss function is minimized). We also assume that the function measure-
ments are taken with i.i.d noise having distribution N (0, 1). We let, θ̂0=[0.1,−0.6]T

θ̂1=[0.1,−0.6]Tbe the initial value of the parameter at the first two steps of both the
FDSA and SPSA with momentum algorithms( the reason we are taking two initials
value is due to implementation of the SPSA with momentum algorithm), we also take
in both procedures similar coefficients (the choice of the coefficient was chosen the
best for the FDSA), mainly : A=10, c=0.05, a=0.3, α = 0.602 and γ = 0.101. First
result we can get, is that if we run both procedure for the same number of iterations
(N=1000) we get the following optimum estimation for The FDSA and SPSA with
momentum:
-FDSA: θ̂N=[0.08 ∗ 10−13, 0.14 ∗ 10−13]T

-SPSA with momentum: θ̂N=[0.11 ∗ 10−17,−0.05 ∗ 10−17]T

We can already see that it seems that the SPSA with momentum has way better
approximation to the estimate than the FDSA, and we actually can get a similar
approximation of the FDSA , while only using around 150 iterations for the SPSA
with momentum.
Next, we will present a table that shows the difference of the average values of the
normalized loss function, where we average over 50 experiments of both algorithms,
both ruining for the first example 50 iterations, and second 1000iterations, starting
from the same initial point,and having similar coefficients. ( in the following table we
abbreviate SPSA with momentum by SPSAM)
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Table 3.1. Sample means of normalized loss Lnorm = Lnorm

(
θ̂k

)
at terminal θ̂k for

FDSA and SPSA over 50 independent replications. Number of loss measurements
y(θ) is such that FDSA and SPSAM take the same number of iterations in each

comparison.

Number of y(θ) values
[number of iterations]

Mean Lnorm for FDSA
and

Elapsed time

Mean Lnorm for SPSAM
and

Elapsed time

200-FDSA; 100-SPSAM
[50 iterations ]

3.73× 10−4 7.95× 10−9

4000-FDSA; 2000-SPSAM
[1000 iterations ]

4.07× 10−18 1.4× 10−33

Remark: Additionally to the previous table, we would like to add information on
the elapsed times(of the running algorithm) of the four examples given above:
-Elapsed time for the run with 50 iterations : Thea Mean normalized loss for the
FDSA took 0.3s, while the SPSAM took only 0.16
-Elapsed time for the run with 1000 iterations : Thea Mean normalized loss for the
FDSA took 17.8s, while the SPSAM took only 10s

4.3 Conclusion:

The analysis given above, in the case of a quadratic function, indicates that not only
does the SPSA have way better approximation than the FDSA when using the same
number of iterations, but it also take way less time for the SPSAM to give results.
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5

Notation

We will follow similar notation as in the reference book[1] :
θ: the parameter we are trying to estimate and in this paper, it is considered as a
column vector with p components(θ ∈ Rp

L(θ): the objective function depending on θ, which is also called the loss function
θ̂k: the generic notation for the estimate θ at the k-th estimate
y(θ) = L(θ) + ε(θ): Noisy measurements of the loss function
yk(θ̂k) = L(θ̂k) + ϵk(θ̂k): Noisy measurements of the loss function at the current esti-
mate θ̂k
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