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What is the FDSA

The Finite Difference Stochastic Approximation (FDSA) is an
algorithm for optimizing systems that lack gradient information
and the accessible input-output data generally depends on some
noise. In this algorithm, we update the unknown parameter θ
(θ ∈ Rp) of the objective(loss) function L(θ), in each iteration,
by adding information from the gradient estimate ĝ(θ). The
procedure used to estimate the gradient is the Finite-Difference
Method, thus requiring 2.p function evaluations per iterations.

Chtiba Reda SPSA with Momentum



SPSA with
Momentum

Chtiba Reda

FDSA

SPSA

SPSA with
Momentum

Comparison
of FDSA and
SPSAM

Recursion procedure for the algorithm

Let θ̂k be the estimate of the θ at the k-th iteration,ak the gain
sequence with positive scalar output and ĝk(θ̂k) the gradient
approximation at the k-th iteration as well.

θ̂k+1 = θ̂k − ak .ĝk(θ̂k)

The gradient estimate formula using the F-D Method is the
following:

ĝk(θ̂k) =


yk(θ̂k + ck .ξ1)− yk(θ̂k − ck .ξ1)

2ck
...

yk(θ̂k + ck .ξp)− yk(θ̂k − ck .ξp)

2ck


Where yk the noisy representation of the loss function, ξi is a
column vector with p components, 1 in it’s i-th row and o
everywhere else and ck is a gain coefficient.
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What is SPSA

Similar to the FDSA, the Simultaneous Perturbation Stochastic
Approximation (SPSA) is also an algorithm for optimizing
systems without information on the gradient, the difference lies
in the method to approximate the gradient,which is the
Simultaneous Perturbation Method, and the main feature of
this technique is that it only requires two measurements of the
loss function, regardless of the dimension of θ
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Recursion Formula for the SPSA

The SPSA has similar recursion procedure as the FDSA:

θ̂k+1 = θ̂k − ak .ĝk(θ̂k)

Where this time the gradient ĝk(θ̂k) is approximated using the
SP Method, thus having the following form:

ĝk(θ̂k) =


yk(θ̂k + ck .∆k)− yk(θ̂k − ck .∆k)

2ck .∆k1
...

yk(θ̂k + ckk .∆k)− yk(θ̂k − ckk.∆k)

2ck .∆kp


Where ∆k ∈ Rp is the random perturbation vector and
E (∆k) = 0 for every k
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What is SPSA with Momentum

The SPSA with Momentum is an extension to the Basic SPSA,
where we include the Momentum Method in the recursion form
of the SPSA, in hope that additional information of the history
of the algorithm, will accelerate the convergence of this
enhanced SPSA.
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Recursion Formula

θ̂k+1 = θ̂k − ak .ĝk(θ̂k) + b.(θ̂k − θ̂k−1)

Where ĝk is the same Estimate of the gradient using the S-P
Method, and b is the Momentum coefficient.
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Numerical proof of convergence

In the sequel, I will present three plots, that were simulated to
show convergence of the parameter of the loss function to the
Optimum.

First, let’s give the setting that have been used in the
simulation.We consider, a loss function L(θ1, θ2) = θ2

1 + θ2
2,

where θ = [θ1, θ2]
T ,the optimum is θ⋆ = [0, 0]T .We consider

the loss measurements are taken with i.i.d noise having
distribution N (0, 1).We let, θ̂0=θ̂1 (initial values of the
parameter) to be generated randomly. we also choose the
coefficient to be in the procedure as : A=10, c=0.05, a=0.5,
α = 0.602 and γ = 0.101.Then, we proceed to make 500
experiments each ruining 1000 iterations
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Second figure
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Numerical comparison between FDSA and SPSAM

Let’s consider a similar framework of the previous
implementation, only this time, we will take

θ̂0=θ̂1=[0.1,−0.6]T and the coefficient a = 0.3.We define the

normalized loss Lnorm (θ̂k)=
L(θ̂k )−L(θ⋆)

L(θ̂0)−L(θ⋆)
, where θ̂k will represent

the terminal of the iterations in each experiment. and we will
present in the sequel, a table that shows, the contrast in
efficiency between the SPSAM and FDSA
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Table 3.1. Sample means of normalized loss
Lnorm = Lnorm

(
θ̂k

)
at terminal θ̂k for FDSA and SPSAM

over 50 independent replications. Number of loss measurements
y(θ) is such that FDSA and SPSAM take the same number of
iterations in each comparison.

Number of y(θ) values
[number of iterations] Mean Lnorm for FDSA Mean Lnorm for SPSAM

200-FDSA; 100-SPSAM
[50 iterations ]

3.73 × 10−4 7.95 × 10−9

4000-FDSA; 2000-SPSAM
[1000 iterations ]

4.07 × 10−18 1.4 × 10−33
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Conclusion

The analysis given previously, in the case of a quadratic
function, indicates that the SPSA with Momentum is
potentially more efficient than the FDSA when using the same
number of iterations
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THANK YOU
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